

ACKNOWLEDGEMENTS

The work reported here was made possible by financial support of seed growers, chemical and seed companies, the Fresno County Pure Seed League, California Crop Improvement Association, and the California Planting Cotton Seed Distributors. This support and cooperation is greatly appreciated.

The assistance of grower cooperators and chemical applicators who donated their time, equipment, and fields to conduct these experiments is especially appreciated. Special thanks are due Don Darnell of Panoche Chemical Company and Frank Morrow of T.M.T. Chemical Company for their interest and many hours of work with these and past experiments concerning insect control in seed alfalfa. Special thanks are also due Bob Vance of Tri-Air, Ed Remus of Westside Crop Dusters, Inc., and Wilbur Ellis Company for their skill and patience in applying insecticides to the experimental plots.

The trials and surveys in Fresno County this year were conducted in alfalfa seed fields of the following growers: John Nakamura, Joe Echeveste, Paul Crevolin, Frank Motte, Anderson Clayton Company, Jim and John Diedrich, John Maitia, Dominic and John Enrico, Harnish-Brinker, and Giffen Ranches, Inc. We are grateful for their interest and cooperation.

The Assistance of graduate students, Mark Sears and Carll Goodpasture in conducting the various surveys and experiments is sincerely appreciated.

RESEARCH ON INSECTS AFFECTING SEED ALFALFA - 1971.

O. G. Bacon¹, T. F. Leigh¹, B. Sheesley², W. D. Riley³, and R. H. James³

Introduction

This is a progress report summarizing research on insects affecting seed alfalfa conducted in Fresno County during 1971. Its purpose is to inform seed growers and agribusiness cooperators of the research conducted with their generous support.

The contents of this summary should not be interpreted as recommendations of the University of California. Insect control recommendations are published by the University of California and can be obtained free of charge from the Farm and Home Advisors Office.

Common and/or manufacturers names of insecticides are used in this report instead of the less familiar chemical terms, but no endorsement of products mentioned is intended. The rates of insecticides applied per acre are all expressed as active material per treated acre. Some of the chemicals included in the experiments reported are not registered for commercial use on seed alfalfa at this time.

¹ Entomologists, Department of Entomology, University of California, Davis.

² Farm Advisor, Fresno County, California.

³ Staff Research Associates, Department of Entomology, University of California, Davis.

The common and/or manufacturers names of insecticides mentioned in this report are as follow:

Azodrin [®]	DDT	Kelthane ®	TEPP
Baygon ®	DuPont 1410	Lannate ®	Thimet 600®
Carzol ®	Dylox ®	Meta-Systox-R®	Thiodan ®
Dibrom ®	Galecron ®	methyl parathion	toxaphene
dimethoate (Cygon)®)	Fundal ®	Supracide ®	
(Cygon, C)	Furadan ®	Temik ®	

Summary and Discussion of 1971 Research Results

1. Numerous new and old insecticides and insecticide combinations, applied as sprays or as granules incorporated into the soil, were evaluated for control of lygus bugs, spider mites, aphids and the consperse stink bug in Fresno County alfalfa seed fields. The various treatments and results obtained are found in the tables and graphs accompanying this report.

The non-registered compounds, Furadan, Supracide, Baygon, and DuPont
1410 compared favorably with DDT-toxaphene, Thiodan-toxaphene, Meta-Systox-R,
and dimethoate as early season spray treatments for lygus bug control.

Several of the experimental compounds are known to be toxic to honey bees
and their use, if registration is obtained, should be restricted to early
season applications prior to bloom and before bees are placed in the field.

Some of the materials might serve as alternatives to dimethoate (Cygon)
where insecticide resistance occurs. Two additional non-registered
materials, Carzol and Lannate, effectively controlled lygus bugs in

experiments that were continued throughout the season during the period of bloom and seed set. In addition to controlling lygus bugs, Carzol also effectively controlled spider mites and stink bugs. Carzol is of special interest because of its reported moderate to low toxicity to honey bees. There is hope that these materials may be registered in the near future for use on seed alfalfa.

Of the systemic insecticides incorporated into the soil, only Temik effectively controlled lygus bugs. Lygus bug populations were controlled for four to five weeks after the first irrigation following the incorporation of the granules into the soil. Control programs involving insecticide sprays in conjunction with relatively late applications of granular Temik should be investigated. Temik appeared to have little adverse effect on predator and parasite populations in the plots. More information should be obtained concerning its effects on bees.

Galecron and Carzol were highly effective in controlling spider mite infestations on seed alfalfa. A single application of Galecron in late June at 1.0 lb. per acre controlled mite populations for virtually the remainder of the season. Three applications of Carzol at 0.5 lb. per acre per application applied for lygus bug control reduced and held spider mite and egg populations to extremely low levels throughout the season.

Repeated use of Carzol stimulated population increases of the spotted alfalfa aphid and the pea aphid. Its use on varieties highly susceptible to aphid attack will require careful monitoring and perhaps the addition of suitable aphicides.

2. Surveys to ascertain and monitor stink bug populations in alfalfa seed fields were conducted at bi-weekly, and later at weekly intervals from

November 10, 1970 through August, 1971. Crown and root (whole plant) samples were taken during the late fall, winter, and early spring while the adult consperse stink bugs were dormant and deep in the crowns of the alfalfa plants. A standard of 10 samples, each consisting of root crowns from 10 inches of row (100 row inches per field), was taken from each of seven survey fields on each sampling date. Stink bug populations were expressed as numbers of bugs per 100 inches of row. As shown in tables and graphs accompanying this report, populations declined steadily throughout the winter. This sampling technique became ineffective when the stink bugs resumed activity and left the plant crowns in the spring.

Sprays of Azodrin, methyl parathion, and Dibrom applied during the winter and burning and clipping of alfalfa were not effective in controlling over-wintering stink bug populations. Clipping resulted in lower stink bug populations in plant crowns during the winter. The reasons for this are unknown although predation by starlings and blackbirds were observed. It is also believed that on warm days the stink bugs moved from clipped areas to areas of more plant growth, perhaps seeking better shelter.

3. A "beating pan" method was developed and used to follow the life cycle and population trends of the consperse stink bug in alfalfa seed fields during the late spring and summer. Weekly population surveys were continued in the seven fields that were monitored during the winter and two additional fields were added to the summer survey. Two generations of the consperse stink bug were observed to occur. Eggs laid by the overwintering generation began hatching in the Firebaugh area as early as May 25 although in the majority of the fields nymphs were first detected on June 8. Adults of this generation matured about the end of June and

nymphs of the second generation were found beginning on July 6. The second generation was from 15 to 35 times greater than the first generation and generally reached population peaks between August 3 and 17.

Use of the "beating pan" sampling method enabled the growers to be aware of the increasing stink bug populations in their fields. Armed with this knowledge, they were able to coordinate insecticide applications with the life cycle and population trends of the stink bug. It was thus possible to remove honey bees from large areas and treat the seed alfalfa and some cotton fields with methyl parathion to control the stink bugs before major crop damage occurred. Yields of alfalfa seed in areas where stink bugs were controlled at the correct time were excellent.

Seed samples were hand harvested from each of the survey fields and from one field to which experimental insecticides were applied (Diedrich field). The samples were taken from restricted locations in the fields where the stink bug counts had actually been made during the season. The damage counts recorded in the tables are not indicative of the seed quality of the entire field because in several of the fields the survey locations were purposely not treated so that seasonal population trends of the stink bug and resulting seed damage could be studied.

Seeds from these samples were examined for sucking insect damage and other injuries. Damage attributable to the consperse stink bug correlated well with stink bug populations observed in the sampling areas. Although injured seeds were obvious they probably do not represent the total damage caused by the stink bugs. Little is known concerning the losses that may result from stink bug feeding in the buds, flower racemes and newly formed pods. Seeds may be prevented from forming or developing under these conditions, which would result in overall reductions in seed yields.

- 4. Several experiments were conducted during the summer to evaluate insecticides for control of the consperse stink bug. The various insecticides investigated andthe results obtained are shown in tables which follow in this report. Of the materials tested only methyl parathion and Carzol were highly effective in controlling the stink bug. The results with Carzol were especially encouraging because, as stated previously, this material is reported to have a moderate to low toxicity to honey bees. It also effectively controls spider mites and lygus bugs.
- 5. Stink bug populations were observed in crops and areas bordering alfalfa seed fields. Early in the spring adult populations were observed on mustard, london rocket, and other roadside weeds. In several localities large stink bug populations were observed in the spring and early summer in sugar beet fields. Stink bugs in all stages of development were present on the beet plants. A large and early hatch of stink bugs occurred in one sugar beet field in the Five Points area which migrated as adults to neighboring alfalfa seed fields in late May and early June. When the sugar beets were harvested in early July a very large population of adults moved to the adjacent alfalfa seed fields. Adults and some fifth instar stink bug nymphs also migrated from a sugar beet field inthe Cantua area to an adjacent alfalfa seed field in mid-July when the beets were harvested.
- 6. Although much progress has been made in research on sucking insects affecting seed alfalfa, especially the stink bug problem, much work remains to be done. Data already obtained on sampling and on population dynamics of the stink bug should be augmented with additional studies to confirm annual population trends and to determine economically.

damaging population levels. The effects of cultural practices within the alfalfa seed fields and in neighboring host crops, such as sugar beets, on stink bug populations require further studies. Additional information is needed concerning preferred host plants and breeding areas outside of alfalfa fields. As yet we know little concerning the effects of parasites and predators on stink bug populations. Undoubtedly, these are key factors, the absence of which result in stink bug outbreaks. Evaluation of insecticides should be continued. Methyl parathion is effective and can currently be used in alfalfa seed fields but its use requires the removal of honey bees from the fields. An effective insecticide that will not harm bees is desired. At least one new insecticide, Carzol, is promising, and others should be sought.

Lygus bug populations in seed alfalfa plots treated with insecticide sprays applied by aircraft. Vista del Llano Ranch, Cantua Creek, California, 1971.

Treatment	1/		Number	of Lygus Bug	s
Insecticide $\frac{2}{}$	AI/ Acre	Days After	Per	Sweep 4/	
######################################	Lb.	Application $\frac{3}{}$	Adults	Nymphs	Total
· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , , 	Pre	1.0	3,3	4.3
		1	0.2	0.4	0,6
Meta Systox R +	0.375	3	0.3	0.3	0.6
Dylox	1.0	7	0.1	0.6	0.7
		14	0.8	1.9	2.7
		21	0.8	4.7	5.6
Personal Property of the Personal Property of	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Puo	1.6	6.4	8.0
		Pre	0,3	2.3	
Carra o d o m	1.0	1 3	0.4	0.7	2.6 1.2
Furadam	1.0	3 7	0.8	0.6	1.4
	•				
		14	1.2	0.4	1.6
		21 	0.8	6.0	6.8
and a control of the		Pre	1.5	4.3	5.8
		ı "	0.0	1.2	1.2
DDT +	2.0	3	0.5	0.9	1.4
Toxaphene	4.0	7	0.9	0.3	1.2
		14	1.4	1.5	2.9
		21	1.1	9.6	10.7
kurish at material is a second of the second	garini a pandoiri da	مرادون والمعروب والمعروب والمعروب			The second secon
		Pre	1.7	4.7	6.4
		1	0.0	0.1	1.0
Supracide	1.0	3 7	0.0	0.0	0.0
			0.2	0.0	0.2
		14	0.8	0.8	1.6
		21	0.5	4,4	4.9
ويقرب والمحادث البريان المحادث والمساورة المحادثة المحادثة والمحادثة المحادثة المحاد	· · · · · · · · · · · · · · · · · · ·	Puo	1.2	4.2	5.4
		Pre		4• 4	0.3
N. d	. 0 5	1	0.1	0.2 0.1	0.3
Dimethoate	0.5	3 7	0.2	0.1	0.3
(Cygon)		/ 14	0.7		
		**		1.9	2.6
$(\mathbf{r}_{i}, \mathbf{r}_{i}, r$		21	0.8	2.5	3.3

Treatment	1/		Number o	f Lygus Bugs	
Insecticide 2/	Acre	Days —		Sweep <u>4</u> /	
	Lb.	Application ³ /	Adults	Nymphs	Total
Baygon	7. A	Pre 1 3	1.4 0.1 0.3 0.2	4.9 0.7 0.7 0.1	6.3 0.8 1.0 0.3
		14 21	0.8 1.2	0.8 5.3	1.6 6.6
Thiodan + Toxaphene + oil (cotton see	1.0 3.0	Pre 1 3 7 14 21	1.2 0.2 0.5 0.3 0.6 0.8	3.1 0.4 0.5 0.2 1.3 6.7	4.3 0.6 1.0 0.5 1.9 7.0
Thiodan + Toxaphene (no oil)	1.0	Pre 1 3 7 14 21	1.4 0.3 0.5 0.4 0.6 1.4	3.4 0.8 0.4 0.0 1.3 7.9	4.8 1.1 0.9 0.4 1.9 9.3
DuPont 1410	1.0	Pre 1 3 7 14 21	1.1 0.0 0.1 0.5 0.5	3.8 0.1 0.0 0.2 1.0 3.7	4.9 0.1 0.1 0.7 1.5 4.4

 $[\]frac{1}{2}$ Plot size: each treatment 5 acres (165° x 1320°).

^{2/} Sprays applied 4:00 to 6:00 AM on June 8 with Snow aircraft at 10 GPA. Furadan was a 4 lb. per gallon flowable paste, Baygon was a 70% wettable powder, Dylox was at 80% soluble powder. The remaining insecticides were emulsifiable concentrates.

^{3/} Pretreatment counts were made June 7.

⁴ Average of 18 sweeps per treatment on each sampling date.

^{5/ 2-25} D-Vac samples per treatment on each sampling date. (Data is not recorded here, but is available upon request.)

LYGUS EXPERIMENT #1

Spotted alfalfa aphid and pea aphid populations in seed alfalfa plots treated with insecticide sprays applied by aircraft to control lygus bugs.

Vista del Llano Ranch, Cantua Creek, California, 1971.

Treatment	1/	Days after	Number of a 50 D-Vac s	phids per
Insecticide $\frac{2}{}$	Al/acre 1b.	application $\frac{3}{}$	S.A.A.	P.A.
		Pre	8	`2
		1	50	0
Meta-Systox-R +	0.375	3	50	0
Dylox	1.0	7	. 22	0
•		14	46 ·	0
		21	76	0
***************************************		Pre	22	14
•		1	52	1
Furadan	1.0	3	45	`0
ruradan	1.0		8	Ö
•		14	11	ŏ
		21	46	0
	<u> </u>	Pre	13	3
		1	68	5 . · ·
DDT +	2.0	3	30	10
Toxaphene	4.0	7	14	8
toxabilette	4.0	1 4	36	11
		21	210	25
	· · · · · · · · · · · · · · · · · · ·	The -	4	8
		Pre 1	1 45	0
Cummanida	1.0	3	45 45	2
Supracide	1.0	7	8	0
		14	21	0
		21	197	0
The state of the s				
		Pre	7	4
		1	40	3
Dimethoate	1.0	3	39	0
		7	12	0
		14 21	66 86	0 0
•		Z.L	00	U.

Treatment	1/	The second second	Number of ap 50 D-Vac sa	
Insecticide 2/	AI/acre lb.	Days after application 3/	S.A.A.	P.A.
Baygon	1.4	Pre 1 3 7 14 21	7 31 33 8 21 93	3 2 0 2 1 8
Thicdan + Toxaphene + oil (cotton soil)	1.0 3.0 eed	Pre 1 3 7 14 21	8 10 6 16 17 75	3 1 0 0 0
Thiodan + Toxaphene (no oil)	1.0	Pre 1 3 7 14 21	6 24 8 6 12 125	5 1 0 0 0
DuPont 1410	1.0	Pre 1 3 7 14 21	25 28 11 .4 17 113	4 3 0 0 15 9

^{1/} Plot size: each treatment 5 acres (165' x 1320')

^{2/} Sprays applied at 10 GPA by Snow aircraft from 4:00 to 6:00 AM on June 8. Furadam was a 4 lb. per gallom flowable paste, Baygon was a 70% wettable powder, Dylox was an 80% soluble powder. The remaining insenticides were emulsifiable concentrates.

^{3/} Pretreatment counts were made Jume 7.

^{4/} Two 25 D-Vac samples per treatment on each sampling date.

Predator and parasite populations in seed alfalfa plots treated with insecticide sprays applied by aircraft to control lygus bugs. Vista del Llano Ranch, Cantua Creek, California, 1971

Treatment	1/			Number	er of		Predators		and P	Parasit	ites	per	50	D-Vac	c samples	les 4/
	AII	Days after	Orius		Geocoris	oris	Nabis		Collops	ops	La	Lace-	Coc ne1	Cocci- nellid	Par	Spiders
Tusecricide _/	Lb.	3/ 3/	A	N	₽	Z	A	Z	A	H	- ▶	۲	A	Ţ	Masps	
		Pre 1	39 5	12 10	15 12	50	0	32	 2	0	3	0	14	0	150 65	7 5
Meta Systox R + Dvl o x	0.375 1.0	7 3		20 20	24 5	10 1	7 10	0		00	6 7	4 7	15	00	84 157	40
<i>v y</i> * • • •	8	14		104	14	Η,	23	3 i	 	0	17	υ τ.		0	128	7
		21	Į.	35	18	р;	19	26	∞ 1	0	<u> </u> !	2	6	0	113	16
Furadan	1.0	Pre 1 3 7 14 21	38 2 3 8 33 75	5 6 6 10 143	13 10 16 8 8 27 22	1 0 14 0 3	6 2 9 14 14	3 1 1 14 21	52222	00000	40004	362420	13 2 2 2 2	00000	220 15 25 14 28	12 8 41
DDT Toxaphene	2.0	Pre 1 3 7 14 21	20 11 17 36 59 103	4 10 10 14 24 32	4 8 3 14 7	26002	8 3 4 6 10	0 2 0 12 21	811104	00000	4 2 2 3	176321	15 10 2 4 8	00000	198 51 44 87 33	3 3 5 11 16
Supracide	1.0	Pre 1 3 .7 14 21	33 1 7 15 15 74 139	0 0 0 5 30 97	6 4 9 16	0 0 1 7	13 2 16 6	0 1 0 5 14 37	511002	00000	510200	0 1 10 11	11 11 21 11 18	00000	147 9 35 36 65	6 5 2 2 14 18

(Continued on next page)

Treatment		Days						ľ		`				,		
Insecticide 2/	AI/ Acre	after applicatio	Orfus E	ŭ	Geo	Geocoris	Z	Natis		Collops	Surk Soci	ତିକ ଫ ପ	3000 14000		hti Distribution	1
	.qT	1 52	Α	Z	А	×	Α	Z	A	۳	A	ניין (`	1-1	:0 ¶∰	60
Dimethoate	0	Pre 1 3 7 14 21	55 4 22 30 30 64 206	72 4 4 3 4 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	17 8 7 9 4	024240	NPH 620	18 14	₩ 000 H0′	00000	ប្រសាល្យល	040404	0 14 0 0 14 0	00000	222 28 70 66 75	2 3. 3. 2 W N
Baygon	1.0	Pre 1 3 7 14	29 1 13 29 44 139	3 0 0 3 2 7 9	128574	20012HH	1075	12 45 38	224220	00000	0 1 4 4 4 4 0	12002	N N N N N W	00000	129 36 78 44 44	
Thiodan + Toxaphene + oil (cotton seed oil)	ယ္ မ () ()	Pre 3 1 7 7 1 1 4 2 1 4 2 1 4 2 1 4 4 1 4 1 4 1 4 1	10171163	o n u e e u	240H20	0H000N	7 7 5 5 5 F	8 P P O O S	DOMOND	00000	4440 W	0 12 7 0 0 0 0	F & 4 & & F	00000	6) H 41 60 60 60 60 70 60 61 60 61 60 61 61 61 61 61 61 61 61 61 61 61 61 61	•
Thiodan + Toxaphene (no oil)	3°0 0	21 4 7 3 F 6	196 221 221 221 221 29	64 110 27 29 29 29 29	3 6 2 2 2 5 3 6 2 2 2 5	14 P O 14 O P	po pod pod CN ∼3 W	☆のひつ ≧い	on ○ == ∪ == ==	0 2000	⊢ 1200000	N 0 N N O PM	المحمومة	00000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ļ
DuPont 1410	у-л • С	Fre 3 7 21	29 7 6 20 48 146	500 S S S S S S S S S S S S S S S S S S	on Norum pd	202102	U1 4 4 4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	90213	37 Po Co (o Po	002002	ひまり こより	Namor	2			

- 1/ Flot size 5 acres (165' x 1320') per treatment.
- Sprays applied 4:00 to 6:00 AM on June 8 with Snow alreraft at 10 GPA. Furadan was 4#/gal. flowable paste, Baygon was a 70% wettable powder, Dylox was an 80% soluble powder. remaining insecticides were emulsifiable concentrates. 2./
- $\frac{3}{4}$ Pretreatment counts were made June 7.
- 4/ 2-25 D-Vac samples per treatment on each sampling date.

as shown by two methods of sampling. $1971 \stackrel{1}{=} 1$, Lygus bug populations in seed affalfa plots treated for lygus bug control Diedrich Ranch, Firebaugh, California,

TO CHIMP IS	
F	1
HY8us	170110
FUR.S	1

Date of	Days after		Per Sweep 4/	
Application $\frac{2}{2}$	Application $\frac{3}{2}$	Treatment A	Treatment B	Treatment C
		A N T	A N T	A N T
Pretr	Pretreatment	4.2 3.0 7.2	1.7 2.6 4.3	1.1 1.5 2.6
June 23				
	6	1,4	0.6	0.7
July 8	14	0,6 6,8 7,5	0.3 5.7 6.0	0.4 5.0 5.6
	6	0.3	0.5	2.2
	14	0.9	0.8	0.4
	19	0.3 1.2 1.5	0.4 1.6 2.0	0.6 2.7 3.3
August 5	27	12.4	28.4	40.1
	Сī	0.2 0.3 0.4	1.0 2.3 3.3	12.7
	13	1.6 4.1 5.6	2,1 14,2 16,3	7.0 6.6 13.6
	19	2.1 16.5 18.6	1.3 71.3 72.6	46.2

Plot size: each treatment 10 acres -- non replicated.

12/ and August 5 as follows: Insecticides were applied as sprays by aircraft at 15 GPA on June 23 and at 10 GPA on July 8

TreatmentA. Carzol 0.5 lb. per acre.

TreatmentB. Lannate 1.0 lb. + Galecron 1.0 lb. per acre on June 23. Lannate 1.0 lb.

TreatmentC. per acre on July 8 and August 5.
Dimethoate 0.5 lb. + Galecron 1.0 lb. per acre on June 23. Toxaphene 4 lb. per acre on July 8 and August 5. DDT 2.0 1b. +

Pretreatment counts made June 22.

Average of 18 sweeps per treatment on each sampling date.

151413 2=25 D~Vac samples per treatment on each sampling date. available upon request.) (Data not recorded here, but is

NOTE: Galecron was added where indicated to the June 23 treatments to control a heavy infestation of two spotted spider mite.

LYGUS EXPERIMENT #2

Predator and parasite populations in a seed alfalfa plot treated with a standard treatment for lygus bug control. Diedrich Ranch, Firebaugh, California, 1971 $\underline{1}/\circ$

Application $\frac{2}{3}$ Application $\frac{3}{3}$	6			Number	70 70								ì)
	bays after $^{2}/^{2}$	Orius	ro	Geocoris	ris	Nabis		Coliops		Lacewing	រួមខ	Cocci- nellid	id id	Par Wasps	Spiders
	1	А	N	Ą	N	A	N	A	Г	А	۲-J	А	إسر		
	Pre	94	20	16	43	13	55	0	0	ħλ	2	7	0	82	
June 23	9	1.5	18	~	38	15	72	1	0	19	ស	, 1	0	112	
	14	7 7	42	17	29	18	2	rH	0	H	4	 I	0	71	
July 8												,	,	ı	
	9	103	14	16	0	7	0	~	0	0	—	,	0	0	16
-	14	129	114	ന	0	ო	က	œ	7	0	0	0	0	თ	
	19	116	387	က	, 1	7	, 	က	0	—	0	0	0	11	
	27	210	29	Ŋ	П	0	14	œ	Ŋ	ო	16	0	0	7	
August 5	ſſ	œ	(0	c	C	C	-	-	С	6	0	0	0	2
	13	34	14	1 61	0	0	, _[7	0	0	18	0	0	7	90
	19	22	143	0	4	0	-	6	7	က	23	0	0	딛	.,

' Plot size: 10 acres--non replicated.

Dimethoate 0.5 lb, + Galecron 1,0 lb, per acre was applied by aircraft at rate of 15 GPA on June 23. DDT 2.0 1b. + Toxaphene 4.0 1b. per acre was applied on July 8 and August 5 by aircraft at 10 GPA.

Pretreatment counts were made June 22.

4/ 2-25 D-Vac samples on each sampling date.

NOTE: Galecron was added to the June 23 treatment to control a heavy infestation of two-spotted spider mite.

Predator and parasite populations in a seed alishia plot treated with Lannate for lygus buy control. Diedrich Ranch, Firebaugh, California, $1971\ \underline{1}/$.

				Number	er of		Fredators	0 13 04	17() 130 111 133 133 133	(† (b (b)	per 50		ac sam	Samples 4/	
Date of	Days after	0r:	Orius	Greo	Greocoris	Na	Nabis	Collops	.ops	Lace	Lacewing	nellid Tellid	fruis priu Ball	Par rasps	Spidere
שה הדדרם הדחה".	apertoactor <u>s</u> ,	Þ	×	Á	N	A	N	Α	닌	A	Ę~;	A	<u></u>		
Jime 93	Pre	-4 -4 -7	34	84	68	21	102	[ruph	0	-1	Cn	12	2	77	↓ ;•
4	თ	10	w	4	77	G	œ	<u>_</u>	0	- 4	~ 1	2	.0	69	75
	14	57	68	σ	67	ţ.	30	0	0	0	0	⊢ ¹	0	57	88
July 8															
,	6	տ	6	128	27	0	0	} —^	o	0	2	0	0	7	ა წ
	14	24	0	144	23	۲	Н	⊢	العما	0	W	0	0	34	3 0
	19	26	۲٠	61	30	2	0	0	12	2	2	0	ω	41	74
٠	27	63	4	48	19	2	Į,	13	œ	4	ᅜ	0	24	63	87
August 5															
	۲i	w	Ų	ហ	•	 1	0	2	0	0	0	0	0	ω	112
	13	28	Н.	-7	ــــ	0	~]	~!	0	 	σ	0	0	21	66
	19	6	2	10	4	0	2	տ	0	j==3	46	0	0	00	97

^{1/} Plot size: 10 acres -- non replicated.

NOTE: Galecron was added to the June 23 treatment to control a heavy infestation of two-spetted spider mite.

^{12/} Lannate 1.0 lb. + Galecron 1.0 lb. per acre was applied by aircraft at rate of 15 GPA on June 23. Lannate at 1.0 lb. per acre was applied on July 8 and August 5 by aircraft at 10 GPA. Only

^{3/} Pretreatment counts were made June 22.

^{4/ 2-25} D-Vac samples on each sampling date.

Fredator and parasite populations in a seed alfalfa plot treated with Carzol for lygus bug control. Diedrich Ranch, Firebaugh, California, $1971\ 1/$.

				NUM	Number of		Predators	s and	Paras	Parasites	per 5	50 D-Vac Samples	ac Sa	mples 4/	
Date of 2/		Ort	Orius	Geoc	Geocoris	Na	Nabis	Coli	Coliops	Lacewing	ring	Cocci- nellid	្ច ភ្	Far Wasps	Spiders
Application2/	Application	A	Z	A	z	₩	N	A	ij	А	~ 1	А	. I		
	Pre	178	38	98	136	24	118	5	0	14	j M	10	 1	06	25
June 23	9	32	63	14	94	ιΩ	24	2	0	2	9	2	0	83	94
	14	57	89	9	29	4	30	0	0	0	0	 1	0	57	88
July 8	,	(c	1	ć	r	c	-	c	c	c		c	c	00
	۰	۰	xo (•	£7 °	- - (ი •	٠,	> <	5	>	4 C	> <	ט ע	000
	14	σ	0	⊢ 1	0	7	-	7.7	4	7	>	7	>	o ;	77
	19	12	ന	0	7	0	0	m	4	0	0	,_	63	10	22
	27	24	0	က	0	0	0	32	39	τ.	20	0	108	11	28
August 5	Ľ	۲,	C	c	-	c	C	,-	9	∞	 -	0	0	, 1	30
		07	'n	7	0	0	0	33	ŀΩ	11	10	7	2	12	06
	19	47	7	-	0	0	0	27	2	53	28	က	24	35	89

1/ Plot size: 10 acres -- non replicated.

Carzol at Carzol was applied as a spray by aircraft at 0.5 lbs. per acre at rate of 15 GPA on June 23. 0.5 lb. per acre was applied on July 8 and August 5 at 10 GPA. 71

3/ Pretreatment counts were made June 22.

4/ 2-25 D-Vac samples on each sampling date.

Spotted alfalfa aphid and pea aphid populations in seed alfalfa plots treated for lygus bug control. Diedrich Ranch, Firebaugh, California, 1971 1/.

Date	Days	Numbe	er of a	phids pe	r 50 D	-Vac Sam	ples 4
of	after	Treatm	nent A	Treatm	ent B	Treatm	ent C
Application2/	Application3/	SAA	PA	SAA	PA	SAA	PΑ
	Pretreatment	1	1	0	0	4	1
June 23							
	6	4	0	0	0	0	0
	14	22	11	1	1	0	1
July 8							
*	6	97	57	1	1	1.	0
	14	202	540	10	0	0	1
	19	310	6772	6	7	14	8
	27	910	979	41	3	84	0
August 5							
-	5	2080	297	41	1	49	0
	13	2714	760	58	0	22	0
	19	7614	5449	12	0	15	0

^{1/} Plot size: Each treatment 10 acres -- non replicated.

Treatment A. Carzol 0.5 lb. per acre.

Treatment B. Lannate 1.0 1b. + Galecron 1.0 1b. per acre on June 23.

Lannate 1.0 1b. per acre on July 8 and August 5.

Treatment C. Dimethoate 0.5 lb. + Galecron 1.0 lb. per acre on June 23. DDT 2.0 lb. + Toxaphene 4.0 lb. per acre on July 8 and August 5.

NOTE: Galecron was added where indicated to the June 23 treatments to control a heavy infestation of two-spotted spider mite.

^{2/} Insecticides were applied as sprays by aircraft at 15 GPA on June 23 and at 10 GPA on July 8 and August 5 as follows:

^{3/} Pretreatment counts made June 22.

^{4/ 2-25} D-Vac samples per treatment on each sampling date.

Mite populations in seed alfalfa plots treated for lygus bug control. Diedrich Ranch, Firebaugh, California, 1971 $\underline{1}/$.

Date	Days	A ver		nber of l Crifolia		ad Mite I 4/	Eggs p
of Application ² /	after Application3/	Treatm	ent A	Treati	nent B	Treatr	nent C
		Mites	Eggs	Mites	Eggs	Mites	Eggs
	Pre	38.8	56.9	34.9	49.2	44.1	33.9
June 23							
	6	8.3	6.1	3.0	11.7	1.4	0.3
	14	4.3	7.4	24.4	4.6	1.6	1.5
July 8							
•	6.	0.4	0.8	0.5	0.2	0.4	1.0
	14	0.3	1.0	3.4	6.5	2.4	2.4
	19	0.5	1.4	7.0	19.6	5.6	13.4
	27	0.5	0.7	14.8	23.8	11.7	4.7
August 5		-					
•	5	0.2	0.7	14.8	14.3	7.2	10.5
	13	0.04	0.6	39.6	52.6	17.3	22.4
	19	0.3	2.2	55.9	57.4	17.5	17.9

^{1/} Plot size: Each treatment 10 acres -- non replicated.

Treatment A. Carzol 0.5 lb. per acre.

Treatment B. Lannate 1.0 lb. + Galecron 1.0 lb. per acre on June 23. Lannate 1.0 lb. per acre on July 8 and August 5.

Treatment C. Dimethoate 0.5 lb. + Galecron 1.0 lb. per acre on June 23. DDT 2.0 lb. + Toxaphene 4.0 lb. per acre on July 8 and August 5.

NOTE: Galecron was added where indicated to the June 23 treatments to control a heavy infestation of two-spotted spider mite.

^{2/} Insecticides were applied as sprays by aircraft at 15 GPA on June 23 and at 10 GPA on July 8 and August 5 as follows:

^{3/} Pretreatment counts made June 22.

⁷⁵ infested trifoliate leaves examined from each treatment on each sampling date.

LYGUS EXPERIMENT #3

Lygus bug populations in seed alfalfa plots treated with granular systemic insecticides applied to the soil. Frank Motte Ranch, San Joaquin, California, 1971.

	/TA	27 E	Davs	Number of	f lygus bugs	S
	Acre			Per	r sweep <u>7</u>	
Insecticide 2/	Lb.	Application 3/	Irrigation 4/	Adults	Nymphs	Total
		Pre-treatment	Ĉ G	٥° د	1.6	2,1
Baygon	3.0	14	œ	0.7	2.3	3,0
15%			15	0.8	9.0	Ľ°3
granules		28	22	1,5	2,4	3,9
		35.8	29	1.2	2.5	3.7
		Pre	0	9.0	1.1	1,7
Furadan	3,0		∞	0.7	2.2	2.9
10%		21 35	15	4.0	0.6	1.0
granules		28	22	6.0	2,6	S, S
		35	29	——————————————————————————————————————	6.9	8,0
		Pre		8°0	1,5	2.3
DuPont 1410	3.0	14	∞	6.0	1.6	2.5
10%		21,	15	1,3	2.1	3,4
granules		28	22	~ ,	6.2	7.7
		35	29	2.1	9,2	11.3
		Pre	i t	0.5		1.4
Temik	3,0	14	œ	0,3		0.7
10%		21	15	0.7	0,2	0,0
granules		28	22	0.7		1.3
		35	29	0,4	· ·	4°8

Treatment 1/	AI/	Days after	Days after	Number Pe	Number of Lygus bugs Per sweep 5/) BBuc
Insecticide 2/	Lb.	Application 3/	Irrigation 4/	Adults	Nyuphe	Total
		Pre		0.5	1. 3	∞ ⊢,
Check	None	14	∞	<u>.</u> 4	1.8	3.3
(No treatment)		· 21 a)	15	0.6	0.3	0.8
		28	22	<u></u>	4.8	5.9
		35	29	0.8	7.2	8.0
		Pre	Ü		6	
Grower		14	∞	0.8	2.2	3.0
treatment //		21 8)	15	0.6	0.2	0.8
		28,	22	0.9	2.3	3.2
		355	29	0.4	0.1	0.6

- 17 Plot size: (48 rows wide 1240' long) approximately 5 acres per treatment.
- 2/ Granules were placed on both sides of row 12" from center and 6" below soil surface (1" below bottom of irrigation furrow) with a four row commercial applicator 12:30 to 8:00 PM on May 26.
- Pretreatment counts were made 9:00 to 10:00 AM May 26.
- 4/ Plots were irrigated June 1.
- 5/ Average of 18 sweeps per treatment on each sampling date.
- 16 2-25 D-Vac samples per treatment on each sampling date. (Data not recorded here, but is available upon request.)
- 17 Grower applications by aircraft: a> June 10--Bidrin 0.5# per acre plus Kelthane 1.5# per acre;
 b> June 24--TEPP 0.5# per acre plus Toxaphene 2.0# per acre.

a> Insecticide spray drift from grower treatment affected plot.

NOTE: All granular treatments required additional treatments for lygus bug control within four weeks following irrigation.

Spotted alfalfa aphid and pea aphid populations in seed alfalfa plots treated with granular systemic insecticides applied to the soil.

Frank Motte Ranch, San Joaquin, California, 1971.

Treatment	1/	Days after	Days after		aphids per
Insecticide	AI/	application 3/	irrigation 4/	50 D-Vac	samples 5/
2/	acre			S.A.A.	P.A.
•		Pre		2	10
Baygon		14	8	0	16
15%	3.0	21	15	0	11
granules		28	22	8	0
(1)		35	29	6	0
		Pre	0	2	6
Furadan		14	8	5	10
10%	3.0	21	15	1	2
granules		28	22	5	1
a		35	29	1	0
		Pre		1	6
DuPont 1410		14	8	5	23
10%	3.0	21	15	1	7
granules		28	22	2	0
		35	29	0	0
		Pre	œ	2	13
Temik		14	8	1	2
10%	3.0	21	15	1	0
granules		28	22	0	0
		35	29	0	0
		Pre		3	8
Check		14	8	0	18
(no	None	21	15	7	12
treatment)		28	22	9	2
		35	29	1	0

^{1/} Plot size (48 rows wide, 1240' long) approximately 5 acres per treatment.

^{2/} Granules were placed on both sides of row 12" from center and 6" below soil surface (1" below bottom of irrigation furrow) with a four row commercial applicator 12:30 to 8:00 PM on May 26.

^{3/} Pretreatment counts were made 9:00 to 10:00 AM May 26.

^{4/} Plots were irrigated June 1.

^{5/} Two 25 D-Vac samples per treatment on each sampling date.

Predator and parasite populations in seed alfalfa plots treated with granular systemic insectivides applied to the soil to control lygus bugs. Frank Motte Ranch, San Joaquin, California, 1971.

Treatment		Da va	Daws	Ne	Number	ဝှု	Predators		and P	aras	ites	per	ွှင့်	D-S	ac samp	les 5/
Insecticide 2/	AI/ Acre	after application	after irrigation	Orius		Geocoris		Nabis	Coll	lops	Lac win	ଜିନ୍ଦୁ	Cocci-	ci- lid	Par Wasps	Spide
	Lb.	10	1+1	A N	A	N	Α	Z	A	Ţ	Α	۳	A	Ţ	1	
	,	Pre	0	28 14	ر د	10	7	э 5	-	0	30	0	20	o ⊢	74	0.7 8
baygon 15%	0	21	1 5 d					118	2 1	0	13	2	14	0	187	~ .
eranules		28	22					127	Ľ	0	0	~.1	6	0	24	ហ
0		35	29					70	0	0	<u> </u>	ω	ၑ	0	63	
		Pre	1					ω	_	0	0	0	16	12	2	
Furadan	3.0	14	œ					27	у Ст	0	18	0	27	0	278	ıw
10%		2 2 1	35	336 354 8/ 57T	- · ·	 	23	106)	0	2 1	ه د	ب د	0 0	26	ب ر
0		35	29					76	2	0	w	4	2	0	45	46
		Pre	Q å					—	0	0	0	0	9	0	128	ı
DuPont 1410	3.0	14	00				. ~J	41	نسر،	, 0	, (00	, o	39) O	447	. س
		21	15				24	, 00 , 00	, –) C	չ ա	ي ک د	ם כ) C	27 7.17	4 c
granules		28 35	29 29	415 416	6 78	37	36	77	21	00	00	2	4	00	32	63
		Pre	9 0	37 3			2	4	0	, 0) 	. 0	· 4	, 2	10	, <u>†</u>
Temik	3.0) 4	n 00				л 🛶	3 E	احا ك	- 0	ی) دی	л⊢	л У	>		C
70%		28	22	288 352	2 20	5.5	£- (ا	- -	O +	<u>}</u> -m=2 (~] (0	0	in i	_
		35	29			Ì	10	ω	0	0	jan-3	4	Ģ	0	_{ال} ور	
	ļ	Fre	0				ω	0	0	0	G	0	46	0) (N	
Check	None	14	∞				7	28	0	0	13	N	70	0	202	
No treatment		21	L4 U1				26	143	· w	0	4	1	-	0	ئىسار »	
		2 7 8	2 2 2 2 2 2	360 301 677 3/3	> 2 > 3	, LO	<u> </u>	122	- G)	- -	ۍ س	1 t.	-	1) ft	7 -
		ţ	į				•	!								

- Flot size: each treatment approximately 5 acres (48 rows x 1240'). 4mg]
- Granules were placed on both sides of row 12" from center and 6" below soil surface (1" below bottom of furrow) with a four row commercial applicator 12:30 to 8:00 PM May 26. 12
- 3/ Pretreatment counts were made 9:00 to 10:00 AM May 26.
- Plots were irrigated June 1.

4/

5/ 2-25 D-Vac samples per treatment on each sampling date.

Lygus bug populations in seed alfalfa plots treated with Temik to control lygus bugs.

Crevolin Ranch, Firebaugh, California, 1971.

	Treatmen	t	Date	Number of	Lygus Bugs pe	r Sweep 2/
Date	Insecticide 1/	AI/Acre 1b.	of Sample	Adults	Nymphs	Total
June 9	Temik	3.0	June 30 July 8	0.1 1.2	0.4 0.5	0.5 1.7
June 9	10% granules	3.0	July 14 July 22	0.7 1.8	0.9 3.9	1.6 5.7
June 2	Meta-Systox-R + Kelthane	0.375 1.5	June 30 July 8 July 14 July 22	1.4 0.8 1.6 1.5	1.7 6.0 3.3 12.0	3.1 6.8 4.9 13.5

^{1/} Meta-Systox-R and Kelthane were applied with a ground sprayer. Temik granules were incorporated into the soil with a four row commercial applicator. The granule plot was irrigated on June 14.

^{2/} Average of 16 sweeps per treatment on each sampling date.

Insect and damaged seed counts in the following tables are not indicative of the entire field where counts were made because in several fields the sampled areas were purposely not treated so that stink bug populations effects could be studied.

The sampling procedures for stink bug populations from November to April in seed alfalfa involved removing 10" of plant row by pruning roots below the soil surface.

Stink bugs were then picked by hand from the alfalfa crowns and plant debris.

Evaluation of sampling methods to determine adult populations of <u>Euschistus conspersus</u> in seed alfalfa fields. Firebaugh, California, 1970.

Experiment	Sampling Method	Numbe Stink	r of Bugs
		Alive	Dead
A 1/	25' of row was clipped with a mechanical sythe. A D-Vac sample was taken from each of 10 locations in the clipped area.	1	2.
A	A root crown sample (10 inches of row) was taken from each of the 10 D-Vac sample locations mentioned above.	5	15
в 2/	Visual inspection of the foliage in six 10' sections of rows without disturbing the plants.	41	0
D <u></u> /	100 D-Vac samples taken in same row areas indicated above.	5	0

^{1/} Enrico Farms, Inc. -- November 10.

^{2/} Echeveste and Elizaldi, Sec. 2, Field #3--November 11. Plants were 18" in height and had not been clipped since harvest.

WINTER SURVEY RESULTS

Adult Euschistus conspersus populations on the root crowns of seed alfalfa during the winter season. Fresno County, California, 1970-71.

	Grower and	Alive or		Number	of sti	nk bugs dates	per 10 indicat	0 inches	s of re	YW.
Field	Location	Dead 	Nov 10	Dec 15	Jan 13	Feb 10	Mar 11	Mar 23	Apr 6	Apr 30
	John Nakamura Sec. 34-12-13	Alive	32	17	12	16	10	6	0	I.
	Firebaugh	Dead	9	1	3	1	1	1	0	0
	Enrico Farms Inc Šec. 3-13-13	.Alive	17	17	13	12	3	7	0	4.
	Firebaugh	Dead	39	34	40	28	32	25	22	3
	John Nakamura Sec. 11-13-13	Alive	107	10	14	5	7	9	1	7
	Firebaugh	Dead	5	1	2	1	6	0	1.	0
	Giffen Cantua Ranch	Alive	11	2.	13	11	1	2	0	0
	Sec. 26-17-15 West of Five Points	Dead	4	0	8	0	3	0	3	0
	Echeveste & Elizaldi	Alive	29	20	11	11	1	2	1	2
	Sec. 2-13-13 Field #3 Firebaugh	Dead	2	1	0	4	0	0	1.	0
	Nicolini & Maitie	Alive	34	16	12	6	4	l ₊	0	579
	Sec. 9-13-13 Firebaugh	Dead	6	0	5	3	1	1	0	
	Benson Sec. 28-18-17	Alive	=	1	3	1	1	0	0	O
	Five Points	Dead	80	1.	0	0	0	1	2	O

^{1/ 10} samples, each consisting of 10 row inches of root crowns were taken in each field on each date. No live nymphs were found on root crown samples.

Winter and Early Spring

1970-71 Stink Bug Population Survey in Fresno County

(Average Populations from 7 Alfalfa Seed Fields)

A "beating pan" proved effective for measuring stink bug populations during the warm months of May through September.

The pan is placed between two rows of alfalfa seed and the alfalfa plants on both sides are bent over the pan for beating. Instar stages of the stink bug life cycle can be followed with this sampling device with more success than with a sweep net or devac machine.

A comparison of three sampling methods for measuring populations of the consperse stink bug, <u>Euschistus</u> <u>conspersus</u>, in seed alfalfa. Nicolini and Maitia Ranch, Firebaugh, California, 1971.

3 1.				Nu	mber	of St	ink F	Bugs_			
Sampling Method		Adult	5		Ny	mphal	. inst	ars		Total adults	
1/ 2/	Ma l es	Females	Total	1	2	3	4	5	Total	and nymphs	
D-Vac	4	1	5	0	0	1	1	0	2	7	
Sweep net	2	6	8	0	0	1	1	1	3	11	
Beating pan	50	38	88	0	0	13	17	22	52	140	

^{1/} Samples taken on July 6 in parallel rows in the same portion of the field.

Sweep net = 5 2-sweep samples (10 sweeps).

Beating pan = 5 pan samples, i.e. 25' of row (5' of row per sample).

^{2/} D-Vac = 25 square foot sucks with the D-Vac sampler.

A comparison of two methods of examining samples taken with a beating pan, for measuring populations of the consperse stink bug, Euschistus conspersus, in seed alfalfa. 1971.

				Nu	umber	of S	tink	Bugs		
Examination Method 1/		Adu1ts			Nyr	npha1	inst	ars		Total adults
riechou/	Males	Females	Total	1	2	3	4	5	Tota1	and nymphs
Visual counts in field	23	13	36	0	62	11	0	14	87	123
Berlese separation	19	10	29	10	87	17	7	17	138	167

Duplicate samples of 5 pans each (25' of row) were taken in the field with the beating pan. Half of the samples were examined in the field and the bugs observed in the pan samples were counted. The remaining half of the samples were brought to the laboratory and placed in Berlese separatory funnels for 24 hours, after which the separated insects were counted.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts. Field A. John Nakamura Section 34, Firebaugh, California, 1971.

Dates			Number	of	stink	bugs	per	25 '	of row	2/
field		Adults			N	ymphal	ins	tars		Total adults
sampled 1/	Males	Females	Total	1	2	3	_ 4	5	Tota1	and nymphs
May 11	0	0	0	0	0	0	0	0	0	0
a > May 17	0	0	0	0	0	0	0	0	0	0
May 25	0	0	0	0.5	2.5	0	0	0	3	3
June 2	0	0	0	0	0	0	0	0	0	0
June 8	0	1.5	1.5	0	0	0.5	0	0	0.5	2
June 15	0	0.5	0.5	0	0	1	0	0	1	1.5
June 21	0	0.5	0.5	0	1	3.5	2	0	6.5	7
June 29	5.5	3.5	9	0	2	4	3	2.5	11.5	20.5
July 6	2.5	2	4.5	1	0.5	0.5	0	0	2	6.5
c) July 13	3.5	5	8.5	0	13.5	2.5	0	3	19	27.5
d> July 20	8.5	7	15.5	8,5	85.5	8	1.5	9	112.5	128
July 27	7	10	17	1	139	26	12	14	192	209
August 3	3	7	10	3	71	41	8	60	182	193
August 11	22	16	38	2	31	32	60	157	282	320
August 17	47	42	89	0	7	7	53	77	144	233
August 24	49	32	81	0	0	4	14	53	71	152
e> August 31	1	1	2	0	0	0	0	0	0	2

^{1/} Insecticide applications

a) May 15 Dimethoate 0.5#/acre + Kelthane 1.5#/acre

b) June 18 Dibrom 1.0#/acre + Toxaphene 4.0#/acre

c) July 8 Dibrom 1.0#/acre + Toxaphene 4.0#/acre

d July 19 Dylox 1.0#/acre + Galecron 0.75#/acre

e August 24 Methyl Parathion 1.2#/acre

^{2/ 5} beating pan samples on each date.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Field A. John Nakamura Sec. 34, Firebaugh, California 1971.

- 1/ 5 beating pan samples on each date.
- 2/ a May 15 Dimethoate 0.5#/acre + Kelthane 1.5#/acre
 - b June 18 Dibrom 1.0#/acre + Toxaphene 4.0#/acre
 - c July 8 Dibrom 1.0#/acre + Toxaphene 4.0#/acre
 - d July 19 Dylox 1.0#/acre + Galecron 0.75#/acre
 - e August 24 Methyl Parathion 1.2#/acre

Numbers and percentages of good and defective alfalfa seeds in samples from stink bug survey - Field A.

John Nakamura, Sec. 34, Firebaugh, California, 1971.

					De	fective See	ds			
Sample <u>1</u> /	Sub Sample	Good Seeds	Chalcid	Lygus Bug	Stink Bug	Shriveled	Water Damage	Green	Other	Total Seeds
	а	119	1	15	11	5	0	3	1	155
	b	118	1	16	19	0	0	4	0	158
L	С	116	5	13	9	0	1	5	1.	150
	đ	119	0	12	11	0	1	3	2	148
	Totals	472	7	56	50	5	2	15	4	611
	á	103	3	20	22	1	0	2	4	155
	b	105	3	17	10	1	0	3	2	141
2	c	86	. 2	14	15	2	0	3	6	128
	d	90	3	24	20	1	0	2	0	140
	Totals	384	11	75	67	5	0	10	12	564
	а	140	1	11	10	0	0	1	3	166
	Ъ	119	1	6	17	0	2	6	0	151
3	c	112	2	22	13	0	0	0	. 1	150
	đ	112	1	7	21	1	2	2	0	146
	Totals	483	5	46	61	1	4	9	4	613
	а	114	3	11	18	0	0	1	2	149
	ъ	117	o	12	23	4	0	5	1	162
Ļ	c	124	1	10	14	3	0	4	0	156
	đ	129	1	10	13	2	0	5	1.	161
	Totals	484	5	43	68	9	0	15	Ly,	628
% of	Totals total	1823 75.5	28 1.15	220 9.10	246 10.2	20 0.82	6 0.24	49 2.02	24 1.00	2416 100

Four 2-quart samples of pods were hand stripped from plants on September 1 prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts. Field B. Enrico Farms, Firebaugh, California, 1971.

Dates			Number	of S	tink	Bugs	per 2	25' of	row <u>2</u> /	
field		Adults			Ny	mpha1	Inst	ars		Total adults and nymphs
sampled 1/	Males	Females	Total	1	2	3	4	5	Total	
May 11	0	0	0	0	0	0	0	0	0	0
May 17	0	0	0	0	0	0	0	0	0	0
a) May 25	1	0.5	1.5	7.5	3	1.5	0	0	12	13.5
June 2	0	0	0	0	2.5	0	0	0	2.5	2.5
June 8	1.5	0.5	2	0	15.5	4	0	0	19.5	21.5
June 15	0	0	0	0	0.5	8,5	1	0	10	10
June 21	1	0.5	1.5	0	1.7	10.5	4	0	31.5	33
June 29	0.5	2.5	3	0	10	6.5	3.5	10	30	33
July 6	10	9	19	0	2	13.5	2	6	23.5	42.5
July 13	14	9	23	0	3.5	1	0.5	8.5	13.5	36.5
July 20	12	11.5	23.5	15	16.5	1	0	1.5	20.5	44
July 27	15	15	30	2	1.0	10	0	1	23	53
August 3	8	11	19	. 46	222	24	4	23	319	338
August 11	3	9	12	7	209	121	18	14	369	381
August 17	13	10	23	1.	102	88	21.6	96	702	725
August 24	11	13	24	2	145	186	265	341	929	953
e» August 31	12	12	24	0	0	0	0	3	3	27

^{1/} Insecticide applications

a> May 20 Kelthane 1.0#/acre + Dimethoate 0.334#/acre

by June 18 Meta-Systox-R 0.375#/acre + Dylox 1.0#/acre

July 7 Meta-Systox-R 0.375#/acre + Dylox 1.0#/acre + Galecron
1.0#/acre

d> July 21 Dylox 1.0#/acre + Toxaphene 4.0#/acre

August 26 Methyl Parathion 1.25#/acre

^{2/} Five beating pan samples on each date.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Field B. Enrico Farms, Firebaugh, California, 1971.

^{1/ 5} beating pan samples on each date.

^{2/} a May 20 Kelthane 1.0#/acre + Dimethoate 0.334#/acre

b June 18 Meta-Systox-R 0.375#/acre + Dylox 1.0#/acre

c July 7 Meta-Systox-R 0.375#/acre + Dylox 1.0#/acre + Galecron 1.0#/acre

d July 21 Dylox 1.0#/acre + Toxaphene 4.0#/acre

e August 26 Methyl Parathion 1.25#/acre

Numbers and percentages of good and defective alfalfa seeds in samples from stink bug survey - Field B.

Enrico Farms, Firebaugh, California, 1971.

					De	fective See	đs			
Sample <u>1</u> /	Sub Sample	Good Seeds	Chalcid	Lygus Bug	Stink bug	Shriveled	Water Damage	Green	Other	Total Seeds
	a	129	1	3	20	0	2	18	0	173
	ъ	142	0	9	21	0	0	19	0	191
1	c	134	1	10	22	0	1	23	0	191
	d	137	0	2	26	0	0	22	0	187
÷	Totals	542	2	24	89	0	3	82	0	742
	a	136	1	3	9	2	2	11	0	164
	b	133	0	6	13	0	1	15	0	168
2	С	137	0	6	11	0	0	16	0	170
	d	141	0	4	16	0	2	8	0	171
	Totals	547	1	19	49	2	5	50	0	673
	а	156	0	3	16	0	1	16	0	192
	Ъ	147	0	3	13	0	2	13	0	178
3	С	154	1	2	19	0	0	25	0	201
	d	153	0	3	13	0	0	12	0	181
	Totals	610	1	11	61	0	3	66	0	752
- -	а	137	0	3	19	0	2	4	1	166
	ъ	167	0	3	10	0	0	12	0	192
4	С	156	1	3	12	0	0	8	0	180
	d	160	0	2	22	0	1	6	0	191
	Totals	620	1	11	63	0	3	30	1	729
<u> </u>	Totals	2319	5	65	262	2	14	228	1	2896
% (of total	80.1	.17	2.2	9.1	.07	.48	7.9	.03	100

^{1/} Four 2-quart samples of pods were hand stripped from plants on September 8 prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts. Field C. John Nakamura Sec. 11, Firebaugh, California, 1971.

Dates		· · · · · · · · · · · · · · · · · · ·	Number	of	Stink	Bugs	per	25' of	row 2/	
field		Adults			N	ympha	l Ins	tars		Total adults
sampled 1/	Males	Females	Total	1	2	3	4	5	Tota1	and nymphs
May 11 a>	-	-	2	0	0	0	0	0	0	2
May 17	0	0	0	0	0	0	0	0	0	0
May 25	0	0	0	0	0	0	0	0	0	0
June 2	0	0	0	0	0	0	0	0	0	0
June 8	0.5	0.5	1	0	6.5	2	0	0	8.5	9.5
June 15	0	0.5	0.5	0	6	3	4	1.5	14.5	15
June 21	1.5	1.5	3	0	0.5	0.5	7	6.5	14.5	17.5
June 29	4.5	2	6.5	0	0	0	1.5	1	2.5	9
July 6	11	5.5	16.5	0.5	4	0	0	1	5.5	22
c) July 13	4	2.5	6.5	1	4.5	0.5	0	0.5	6.5	13
July 20	5.5	4	9.5	6	126	24.5	1.5	5.5	163.5	173
July 27	8	14	22	14	434	108	18	40	614	636
August 3	22	26	50	21	25 2	278	95	263	904	954
August 11	43	40	83	5	280	150	45	118	598	681
August 17	78	70	148	0	64	262	341	74	741	889
August 24	104	90	194	0	21	87	164	105	377	571
August 31	5 0	57	117	0	13	42	88	287	430	547

^{1/} Insecticide applications

a May 15 Dimethoate 0.5#/acre + Kelthane 1.5#/acre

b> June 22 Dibrom 0.75#/acre + Toxaphene 4.0#/acre + Galecron
0.75#/acre

c> July 8 Dibrom 1.0#/acre + Toxaphene 4.0#/acre

^{2/ 5} beating pan samples on each date.

Populations of the consperse stink bug, Euschistus conspersus, in an alfalfa seed field as determined by weekly survey counts.

Field C. John Nakamura Sec. 11, Firebaugh, California, 1971.

- May 15 Dimethoate 0.5#/acre + Kelthane 1.5#/acre 2/
 - June 22 Dibrom 0.75#/acre + Toxaphene 4.0#/acre + Galecron 0.75#/acre
 - July 8 Dibrom 1.0#/acre + Toxaphene 4.0#/acre

Numbers and percentages of good and defective alfalfa seeds in samples from stink bug survey - Field C.

John Nakamura, Sec. 11, Firebaugh, California, 1971.

			····		Def	ective Seed	s			
Sample 1/	Sub Sample	Good Seeds	Chalcid	Lygus bug	Stink Bug	Shriveled	Water Damage	Green	Other	Total Seeds
	а	64	0	11	46	0	0	7	2	130
	ъ	55	0	21	34	0	0	6	3	119
1	c	74	0	11	39	0	0	6	3	133
	d	68	0	34	42	0	0	10	3	157
	Totals	261	0	77	161	0	0	29	11	539
	a	86	0	17	61	0	1	5	0	170
	b	58	0	19	51	0	1	4	0	133
2	c	60	0	30	55	0	1	1	1	148
	d	57	0	24	50	1	1	7	0	140
	Totals	261	0	90	217	1	4	17	1	591
	á	71	0	30	86	1	1	6	1	196
	ъ	75	0	11	75	0	3 .	2	3	169
3	С	72	0	27	80	1	0	1	1	182
	d	74	0	27	73	1	0	2	0	177
	Totals	292	0	95	314	3	4	11	5	724
,	а	112	0	12	43	0	0	2	0	169
	ъ	113	0	13	43	0	0	3	3	175
4	c	101	0	19	42	0	0	4	2	168
	d	115	0	18	50	0	0	3	3	189
	Totals	441	0	62	178	0	0	12	8	701
	Totals	1255	0	324	870	4	8	69	25	2555
% о	f total	49.1	0	12.6	34.1	.16	.31	2.7	1.0	100

Four 2-quart samples of pods were hand stripped from plants on September 8 prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Field D. Giffen, Inc., Cantua Ranch, Fresno County, California, 1971.

Dates			N	umber of	st	ink l	ougs	per	25'	of row <u>2</u> /	
field			Adults			Nyr	npha1	in	stars		Total adults
sampled 1/		Males	Females	Total	1	2	3	4	5	Tota1	and nymphs
May 11		0	0	0	0	0	0	0	0	0	0
May 17 <u>3</u> /		-	car	4		e==	-	-	-	•	-
May 25 <u>3</u> /		-	-	-	-	-		-		-	-
June 2 <u>3</u> /		-	-	-	_	deb	m	-	-	-	6 0
June 8	٠.	0	0	0	0	0	0	0	0	0	0
June 15	a>	0	0	0	0	0	0	0	0	0	0
June 18		0	0	0	0	0	0	0	0	0	0
June 21		0	0	0	0	0	0	0	0	0	0
June 29		0	0	0	0	0	0	0	0	0	0
July 6	13	. 0	0	0	0	0	0	0	0	0	0
Ju1y 13	ъ	0	0	0	0	0	0	0	0	0	0
Ju1y 20	۸.	1	1	2	0	0.5	2.5	0	2.5	5.5	7.5
July 27	c>	1	. 3	4	0	0	1.	0	2	3	7
August 3		7	7	14	6	17	2	0	0	25	39
August 11		0	1	1	0	2	4	6	1	13	14
August 17		2	2	4	0	1	0	1	10	12	16

^{1/} Insecticide applications

a) June 11 Dimethoate 0.5#/acre

b) July 3 DDT 1.5#/acre + Toxaphene 3.0#/acre + Dylox 1.2#/acre

c) July 27 Thimet 600 1.0#/acre + Toxaphene 3.0#/acre + Dylox 1.2#/acre

^{2/ 5} beating pan samples on each sampling date.

^{3/} Cultivated and too short to sample.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Field D. Giffen, Inc. Cantua Ranch, Fresno County, California, 1971.

^{1/ 5} beating pan samples on each date.

^{2/} a June 11 Dimethoate 0.5#/acre
b July 3 DDT 1.5#/acre + Toxaphene 3.0#/acre + Dylox 1.2#/acre
c July 27 Thimet 600 1.0#/acre + Toxaphene 3.0#/acre + Dylox
1.2#/acre

Numbers and percentages of good and defective alfalfa seeds in samples from stink bug survey - Field D.

Cantua Ranch, (Giffen, Inc.), Fresno County, California, 1971.

					De	fective See	ds			
Sample	Sub Sam p1 e	Good Seeds	Chalcid	Lygus Bug	Stink Bug	Shriveled	Water damage	Green	Other	Total Seeds
	а	203	0	5	3	0	0	3	0	214
	Ъ	187	0	3	3	2	0	2	0	197
1	С	189	0	2	2	0	1	4	0	198
	d	195	0	8	0	0	0	1	0	204
	Totals	774	0	18	8	2	1	10	0	813
	a	155	1	3	1	1	0	1	3	165
	ъ	159	0	6	3	1	0	0	0	169
2	С	162	0	4	3	2	0	0	2	173
	d	167	0	3	3	2	1	0	1	177
	Totals	643	1	16	10	6	1	1	6	684
	a	187	0	4	1	0	0	1	0	193
	ъ	174	0	3	1	1	1	0	0	180
3	c	176	0	6	2	1	2	3	1	191
	đ	168	o	3	5	2	1	3	0	182
	Totals	705	0	16	9	4	4	7	1	746
	a	164	0	8	2	2	0	0	1	177
	ъ	186	0	1	1	1	0	1	0	190
4	c	177	0	5	2	1	0	1	0	186
	đ	178	0	2	1	0	4	0	0	185
	Totals	705	0	16	6	4	4	2	1	738
	Totals	2827	1	66	33	16	10	20	8	2981
% (of total	94.8	.03	2.2	1.1	0.54	. 34	.67	.27	100

Four 2-quart samples of pods were hand stripped from plants on August 24 prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Field E. Echeveste and Elizaldi, Sec. 2, Field #3, Firebaugh, California, 1971.

Dates			N	lumber o	f s	ink	bugs	pei	25'	of row 2	./
field	Ī		Adults			Ny	mpha	l in	nstars		Total adults
sampled 1/		Males	Females	Total	1	2	3_	4	5	Total	and nymphs
May 11		-	•	==	can	-	-	-	-	-	-
May 17		-	cro-	æ	æ		-	•	423	tel	-
May 25		0	0	0	0	0	0	0	0	0	0
June 2		0	0	0	0	0	0	0	0	0	0
June 8		0	0	0	0	1.5	2.5	0	0	4	4
June 15	a}	0	0	0	0	0.5	2	1	0	3.5	3.5
June 21	7.	0	1	1	0	7.5	5	3	0	15.5	16.5
June 29	Ь	2.5	3.5	6	0	0.5	0	0	0	0.5	6.5
July 6		1.5	1	2.5	0	0	0	0	0.5	0.5	3
July 13	-1	1	2.5	3.5	0	0	0	0	0	0	3.5
July 20	c)	1	0	1	6	53	2	0	0	60	61
July 27	ď	2	2	4	1	132	3	0	0	136	140
August 3		0	0	0	0	0	0	0	1	1	1
August 11	e)	0	1	1	0	159	2	0	1	162	163
August 17		0	0	0	0	0	23	63	0	86	86
August 24	دا	0	0	0	0	0	1	3	104	108	108
August 31	f》	0	1	Ţ	0	0	0	0	0	0	1

^{1/} Insecticide applications

a) June 11 Galecton 1.0#/acre

b) June 24 Dibrom 0.75#/acre + Toxaphene 4.0#/acre

c) July 13 Dibrom 1.0#/acre + Toxaphene 4.0#/acre

d> July 28 Methyl Parathion 1.25#/acre + Dimethoate 0.5#/acre

e August 9 Thiodan 1.5#/acre + Galecron 1.0#/acre

August 24 Methyl Parathion 1.25#/acre

^{2/ 5} beating pan samples on each date.

Populations of the consperse stink bug, $\underline{\text{Euschistus}}$ conspersus, in an alfalfa seed field as determined by weekly survey counts. Field E.

Echeveste and Elizaldi Sec. 2, Field #3, Firebaugh, California, 1971.

- 1/ 5 beating pan samples on each date.
- 2/ a June 11 Galecton 1.0#/acre
 - b June 24 Dibrom 0.75#/acre + Toxaphene 4.0#/acre
 - c July 13 Dibrom 1.0#/acre + Toxaphene 4.0#/acre
 - d July 28 Methyl Parathion 1.25#/acre + Dimethoate 0.5#/acre
 - e August 9 Thiodan 1.5#/acre + Galecrom 1.0#/acre
 - f August 24 Methyl Parathion 1.25#/acre

Numbers and percentages of good and defective alfalfa seeds in samples from stink bug survey - Field E. Echeveste and Elizaldi, Sec. 2, Field #3, Firebaugh, California, 1971.

					De	fective See	ds			
Sample	Sub Sample	Good Seeds	Chalcid	Lygus bug	Stink bug	Shriveled	Water damage	Green	0ther	Total Seeds
	a	173	0	3	11	0	2	1	0	190
	b	181	1	5	14	0	0	0	0	201
1	С	177	0	3	13	0	0	0	2	195
	đ	173	0	1	14	0	0	2	3	193
	Totals	704	1	12	52	0	2	3	5	779
	а	184	0	4	12	0	5	1	0	206
	ъ	178	0	1	11	0	5	2	0	197
2	С	185	0	1	7	0	5	2	0	200
	d	184	0	2	16	0	0	o	0	202
	Totals	731	0	8	46	0	15	5	0	805
	a	179	0	2	10	0	5	0	2	198
	ъ	175	0	1	17	0	3	0	1	197
3	С	186	0	1	14	0	3	0	0	204
	d	175	0	4	14	2	6	0	0	201
	Totals	715	0	8	55	2	17	0	3	800
· · · · · · · · · · · · · · · · · · ·	a	182	o	3	14	0	0	0	0	199
	ъ	188	0	1	15	0	3	2	0	209
4	c	181	0	4	15	0	10	0	0	210
	d	181	0	4	12	O	3	3	0	203
	Totals	732	o	12	56	0	16	5	0	821
	Totals	2882	1	40	209	2	50	13	8	3205
% (of total	89.9	.03	1.3	6.5	.06	1.6	.41	.25	100

Four 2-quart samples of pods were hand stripped from plants on September 1 prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Populations of the conspersus stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Field F. Nicolini and Maitia Ranch, Sec. 9, Firebaugh, California, 1971.

		Nu	mber of	sti	nk bu	ıgs I	per	25 of	f row <u>2</u> /	
Dates field		Adults			Nym	pha1	ins	tars		Total adults
sampled 1/	Males	Females	Total	1	2	3	4	5	Tota1	and nymphs
a) May 11	0	0	0	0	0	0	0	0	0	0
May 17	0	0	С	0	0	0	0	0	0	0
May 25	0	0	0	0	0	0	0	0	0	0
June 2	₩.	œ	0.5	0	0	0	0	0	0	0.5
June 8	0	0	0	0	0.5	0	0	0	0.5	0.5
June 15	0	0	0	0	0	3	0	0	3	3
June 21	6		6 23	#5	-	•	es:	-	-	œ
June 28	0	1.	1	0	2	1	1	0.5	4.5	5.5
July 6	3	3.5	6.5	0	0	1.5	0	0.5	2	8.5
July 13	2	5.5	7.5	0	3	2.5	0	3	8.5	16
July 20	7	7	14	3	67	27	8	8	123	137
July 27	13	14	27	5	230	17	13	16	281	308
August 3	1	2	3	0	0	0	0	1	1	4
August 11	6	3	9	0	1	0	0	0	1	10
August 17	2	0	2	0	0	0	5	0	5	7
August 24	0	0	0	0	0	0	0	8	8	8
August 31	8	11	19	0	19	17	16	7	59	78

^{1/} Insecticide applications

a) May 7 Kelthane 1.5#/acre + Dimethoate 0.5#/acre

b) July 2 Thimet 600 1.0#/acre + Toxaphene 4.0#/acre + Galecron 1.0#/acre

c> July 28 Methyl Parathion 1.25#/acre

August 12 Dibrom 1.5#/acre

^{2/ 5} beating pan samples on each date.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts. Field F.

Nicolini and Maitia Ranch, Sec. 9, Firebaugh, California, 1971.

1/ 5 beating pan samples on each date.

- 2/ a May 7 Kelthane 1.5#/acre + Dimethoate 0.5#/acre
 - b July 2 Thimet 600 1.0#/acre + Toxaphene 4.0#/acre + Galecron 1.0#/acre
 - c July 28 Methyl Parathion 1.25#/acre
 - d August 12 Dibrom 1.5#/acre

Numbers and percentages of good and defective alfalfa seeds in samples from stink bug survey - Field F.

Nicolini and Maitia, Sec. 9, Firebaugh, California, 1971.

						Defective S	eeds			
Sample 1/	Sub Sample	Good Seeds	Chalcid	Lygus bug	Stink bug	Shriveled	Water damage	Green	Other	Total Seeds
	a	205	.0	3	10	0	2	0	0	220
	b	220	0	2	1	0	2	0	0	225
1	С	218	1	3	5	0	1	2	0	230
	d	214	0	2	3	0	0	1	0	220
	Totals	857	1	10	19	0	5	3	0	895
	а	215	1.	3	9	. 0	6	0	0	234
	Ъ	228	0	3	3	. 0	3	0	0	237
2	c	216	0	1	5	0	4	0	0	226
	đ	214	2	2	7	0	3	0	0	228
	Totals	873	3	9	24	0	1.6	0	0	925
	a	205	0	5	2	0	1	0	0	213
	ъ	214	1	6	10	0	0	0	0	231
3	c	212	0	1	7	0	2	0	0	222
	d	205	0	1	5	0	5	1	0	217
	Totals	836	1	13	24	0	8	1	0	883
	а	186	0	3	7	0	2	0	0	198
	ь	200	0	6	7	0	1	1	0	215
4	c	207	0	3	4	0	3	0	0	217
	đ	211	1	1	3	0	1	0	0	217
	Totals	804	1	13	21	0	7	1	0	847
	Totals	3370	6	45	88	0	36	5	0	3550
% о	f total	94.9	.17	1.3	2.4	0	1.0	.14	0	100

Four 2-quart samples of pods were hand stripped from plants on September 1 prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Nicolini and Maitia, Sec. 33, Field #3, Firebaugh, California, 1971.

Dates			Number	of s	stink	bug	s pe	r 25	of row	2/
field		Adu1ts			N	ymph	al i	nstar	'S	Total adults
sampled <u>1</u> /	Males	Females	Total	1	2	3	4	5	Total	and nymphs
July 13	48	30	78	0	12	1	4	4	21	99
July 20	11	5	16	1	406	49	1	0	457	473
a) July 27 b)	0	0	0	0	0	0	1	5	6	6
August 3	0	0	0	1	14	0	1	1	17	17
August 11	2	4	6	0	2	2	6	0	10	16
August 17	1	0	1	0	16	11	0	11	38	39
August 24	0	2	2	0	0.	0	0	1	1	3
August 31	0	0	0	0	_ 0	0	0	0	0	0

^{1/} Insecticide applications

April 26 Kelthane MF 1.5#/acre + Dimethoate 0.5#/acre May 10 Thiodan 1.5#/acre

July 7 Dibrom 1.0#/acre + Toxaphene 4.0#/acre

- a) July 26 Methyl Parathion 1.25#/acre
- b) August 3 Thimet 600 1.0#/acre + Galecron 0.75#/acre
- c) August 18 Thiodan 1.5#/acre + Dibrom 1.0#/acre

^{2/ 5} beating pan samples on each date.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Nicolini and Maitia, Sec. 33, Field #3, Firebaugh, California, 1971.

1/ 5 beating pan samples on each date.

- 2/ a May 10 Thiodan 1.5#/acre
 - b July 7 Dibrom 1.0#/acre + Toxaphene 4.0#/acre
 - c July 26 Methyl Parathion 1.25#/acre
 - d August 3 Thimet 600 1.0#/acre + Galecron 0.75#/acre
 - e August 18 Thiodan 1.5#/acre + Dibrom 1.0#/acre

Numbers and percentages of good and defective alfalfa seeds in samples from stink bug survey - Field #3

Nicolini and Maitia, Sec. 33, Field #3, Firebaugh, California, 1971.

					De	fective See	ds			
Sample 1/	Sub Sample	Good Seeds	Chalcid	Lygus bug	Stink bug	Shriveled	Water damage	Green	Other	Total Seeds
	а	155	4	0	18	0	4	1	0	182
	ь	172	2	2	22	0	4	0	0	202
. 1	c	160	7	1	15	0	5	0	0	188
	đ	168	4	1	20	0	0	1	0	194
	Totals	655	17	4	75	0	13	2 -	0	766
<u></u>	а	169	4	2	18	0	0	1	<u></u> 0	194
	Ъ	178	3	0	10	0	0	3	0	194
2	c	176	3	3	11	0	2	2	0	197
	đ	183	4	3	14	0	0	0	0	204
	Totals	706	14	8	53	0	2	6	0	789
	а	178	2	4	28	0	0	0	0	212
	ъ	184	7	0	17	0	0	0	0	208
3	С	179	2	2	16	0	1	0	0	200
	d	174	2	0	25	0	1	0	0	202
	Totals	715	13	6	86	0	2	0	0	822
,	а	172	2	2	24	0	1	1	0	, 202
	ъ	163	9	2	23	0	0	3	0	200
4	С	174	4	2	17	0	1	4	0	202
	đ	157	2	3	16	0	0	3	0	181
<u>.</u>	Totals	666	17	9	80	0	2	11	0	785
	Totals	2742	61	27	294	0	19	19	0	3162
% о	f total	86.7	1.9	.90	9.3	0	.6	.6	0	100

^{1/} Four 2-quart samples of pods were hand stripped from plants on September 8 prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Harnish, Brinker Ranch, Five Points, California, 1971.

Dates			N	umber o	f st	ink	bugs	peı	25'	of row <u>2</u> /	
field			Adults		· · · ·	Ny	mpha	1 ir	stars		Total adults
sampled 1/		Males	Females	Total	1	2	3	4	5	Tota1	and nymphs
May 17	a)	0	0	0	0	0	0	0	0	0	0
June 2	a)	•	a	. 5	1	34	7.5	0	0	42.5	47.5
June 8		450	=	5	•		œ	óru		40.5	45.5
June 15	ь>	2.5	4	6.5	0	51	44.5	29	2	126.5	133.0
June 21	в у с}	3	2	5	. 0	77	38	65	7.5	187.5	192.5
June 29	c/	4	3.5	7.5	0	0	0	0	0	0	7.5
July 6	d 〉	8	10.5	18.5	0	0	0	0	0	0	18.5
July 13	•	23.5	18.5	42	0	1.5	0	0	0	1.5	43.5
July 20	e >	1.1	10	21	1.5	28.	5 0.	5 0	0	30.5	51.5
July 27		7	9	16	2	220	38	12	5	277	293
August 3	c)	33	41	74	5	300	245	141	178	869	943
August 11	f>	4	4	8	15	8	0	1	12	36	44
August 17		21	24	45	0	17	20	0	6	43	88

 $[\]frac{1}{2}$ Insecticide applications

a) May 30 Malathion 1#/acre + Toxaphene 4#/acre

b) June 15 Malathion 1#/acre + Toxaphene 4#/acre

c) June 24 Methyl Parathion 1.25#/acre

d> July 7 TEPP 0.75#/acre + Toxaphene 4#/acre

e) July 18 Dibrom 1.0#/acre + Toxaphene 2#/acre + DDT 1.0#/acre

f) August 5 Methyl Parathion 1.25#/acre

^{2/ 5} beating pan samples on each date.

Populations of the consperse stink bug, Euschistus conspersus, in an alfalfa seed field as determined by weekly survey counts.

Harnish, Brinker Ranch, Five Points, California, 1971.

- 1/ 5 beating pan samples on each date.
- 2/ a May 30 Malathion 1.0#/acre + Toxaphene 4.0#/acre
 - b June 15 Malathion 1.0#/scre + Toxaphene 4.0#/acre
 - c June 24 Methyl Parathion 1.25#/acre
 - d July 7 TEPP 0.75#/acre + Toxaphene 4#/acre
 - e July 18 Dibrom 1.0#/acre + Toxaphene 2.0#/acre + DDT 1.0#/acre
 - f August 5 Methyl Parathion 1.25#/acre

Numbers and percentages of good and defective alfalfa seeds in samples from stink bug survey.

Harnish, Brinker Ranch, Five Points, California, 1971.

					D	efective Se	eds			
Sample 1/	Sub Sample	Good Seeds	Chalcid	Lygus bug	Stink bug	Shriveled	Water damage	Green	Other	Total Seeds
	а	138	2	2	24	0	1	2	0	169
	ъ	127	0	6	29	0	2	0	0	164
1	С	136	0	4	23	0	3	0	0	166
	đ	134	1	8	25	0	1	2	0	171
	Totals	535	3	20	101	0	7	4	0	670
	æ	152	1	2.	27	0	1.	0	0	183
	ь	143	2	3	22	1	0	0	0	171
. 2	c	133	1	7	24	0	0	0	0	165
	d	125	0	7	14	0	0	0	0	146
	Totals	553	4	19	87	1	1	0	0	665
	а	129	2	2	30	0	2	1	0	166
	ъ	136	2	5	30	1	0	1	1	176
3	С	132	1	4	26	0	0	1	0	164
	đ	150	0	3	30	0	1	0	0	184
	Totals	547	5	14	116	1	3	3	1	690
	а	149	0	3	19	0	1	3	0	175
	ь	138	1	2	26	0	1	0	0	168
4	c	128	1	8	29	0	1	0	0	167
	đ	142	0	6	22	0	0	0	0	170
	Totals	557	2	19	96	0	3	3	0	680
	Totals	2192	14	72	400	2	14	10	1	2705
% o:	f total	81.0	.52	2.7	14.7	.07	.52	.37	.04	100

^{1/} Four 2-quart samples of pods were hand stripped from plants on August 24 prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, in an alfalfa seed field as determined by weekly survey counts.

Echeveste and Elizaldi, Sec. 2, Field #2, Firebaugh, California, 1971.

Dates		<u></u>		mber of	sti	ak bi			5' of ro		
Field	/		Adults				Nyı	mphal	instars	}	Total adults
Sampled 1/		Males	Females	Total	1	2	3	4	5	Total	and nymphs
May 11		€	G	dan da	0	0	0	0	0	0	1
May 17		0	0	0	0	0	0	0	0	0	0
May 25		0	0.5	0.5	0	0	0	0	0	0	0.5
June 2		0	0	0	0	0	0	0	0	0	0
June 8		0	0.5	0.5	0	10	0.5	0	0	10.5	11
June 15	a)	0	0.5	0.5	0.5	1.5	3	0	1	6	6.5
June 21	b》	1	0	1.	0	0	0	0	0	0	1
June 29		1.5	1	2.5	0	3.5	0	0.5	0	4	6.5
July 6	۵١.	3.5	3.5	7	0	4	2	0	0.5	6.5	13.5
Ju1y 13	c) d)	5	5.5	10.5	0	5.5	4.5	0.5	2.5	13	23.5
July 20	a)	0.5	1	1.5	0	T erril	2	0	2	5	6.5
July 27		15	31	46	0	16	3	3	13	35	81

^{1/} Insecticide applications

a) June 11 Galecron 1.0#/acre

b) June 17 Dylox 1.2#/acre + Toxaphene 4.0#/acre

c) July 8 Meta Systox-R 0.37#/acre

d) July 19 Thimet 600 1.0#/acre

^{2/ 5} beating pan samples on each date.

Populations of the consperse stink bug, Euschistus conspersus, in an alfalfa seed field as determined by weekly survey counts.

Echeveste and Elizaldi Sec. 2, Field #2, Firebaugh, California, 1971.

^{1/} 5 beating pan samples on each date.

^{2/} a June 11 Galecron 1.0#/acre

b June 17 Dylox 1.2#/acre + Toxaphene 4.0#/acre

c July 8 Meta Systox-R 0.37#/acre

d July 19 Thimet 600 1.0#/acre

SUMMARY

1971 Summer Populations of Stink Bugs in 9 Alfalfa Seed Fields in Fresno County

Number of Stink Bugs (adults & nymphs) per 25' of row $\underline{1}/$

Grower and		May				June				Ju	July		:	Aer	August		:
Field	11	17	25	2	8	15	21	29	9	13	20	27	3	11	17	24	31
Field A Nakamura Sec, 34	0	0	٣	0	2	7	7	21	7	28	128	209	193	320	233	152	2/2
Field B Enrico	0	0	14	r	22	10	33	33	38	37	77	53	338	381	728	953	27
Field C Nakamura Sec. 11	7	0	0	0	10	1.5	; 1 ∞	6	22	13	173	636	756	681	889	571	547
Field D Giffen, Inc. Cantua Ranch	0	8	0	a	0	0	O	0	0	0	913	7	39	~ _	16	O	0
Field E Echeveste Sec. 2 (#3)	8	0	0	0	4	4	17	۴	m ·	7	61	140	710	163	86	108	ā m
Field F Maitia Sec. 9	0	0	0	,I	, 1	က	O.	9	6	16	137	308	75/	10	7	∞	78
Echeveste Sec. 2 (#2)	1	0	1	0	11	7	F	٥	14)	24	7	81	Đ	0	0	8	ŋ
Maitia Sec. 33 (#3)	8	0	B	5	0	đ	Û	0	B	66	473	2/6	17	16	39	£.	0
Harnish-Brinker Five Points	a	0	Q	48	97	133	193	2/ 8	19	77	52	3/ 293	943	72 77	88	Q	
$\frac{1}{2}$ 5 beating pan samples on	samples	on ea	each date,	ű		2/ Me	Methyl F	Parathion application,	on app	licati	on	3/	Adjacent harvested	ent su	sugar beet	et field	Id

Population counts in this table are not indicative of the entire field because in several fields the sampled areas were purposely not treated so that stink bug populations could be studied. NOTE:

SUMMARY

Percentages of good and defective alfalfa seeds in samples from stink bug survey fields.

Fresno County, California, 1971.

							2/	~ 	
Grower	Date				Dei	ective Seed	is <u>-</u> /	 	
and Location	Sampled 1/	Good Seeds	Chalcid	Lygus Bug	Stink Bug	Shriveled	Water Damage	Green	Other
Field A John Nakamura Sec. 34	$\texttt{Sept.}_{\downarrow} 1$	75.5	1.2	9.1	10.2	0.83	0.25	2.0	1.0
Field B Enrico Farms	Sept. 8	80.1	0.17	2.2	9.1	0.07	0.48	7.9	0.03
Field C John Nakamura Sec. 11	Sept. 8	49 .1	0.90	12.6	34.1	0.16	0.31	2.7	1.0
Field D Giffen, Inc., Cantua Ranch	Aug. 24	94.8	0.03	2.2	1.1	0.54	0.34	0.67	0.27
Field E Echeveste and Elizaldi Sec. 2, Field #3	Sept. 1	89,9	0,03	1. 3	6.5	0.06	1.6	0.41	0.25
Field F Nicolini and Maitia Sec. 9	Sept. 1	94.9	0.17	1.3	2.4	0.00	1.0	0.14	0.00
Nicolini & Maitia Sec. 33, Field #3	Sept. 9	S6.7	1.9	0.90	9.3	0.00	0.60	0.60	0.00
Harnish, Brinker Ranch Five Points	Aug. 24	81,0	0.52	2.7	14.7	0.07	0.52	0.37	0.04

^{1/} Four 2-quart samples of pods were hand stripped from plants prior to commercial harvest. Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples drawn from each of the threshed 2-quart samples.

^{2/} Damage counts in this table are not indicative of the seed quality of the entire field because in several fields the sampled areas were purposely not treated so that stink bug population effects could be studied.

STINK BUG EXPERIMENT #1

Results obtained with Methyl Parathion and Azodrin to control overwintering populations of the consperse stink bug.

Euschistus conspersus in seed alfalfa.

John Nakamura Ranch, Firebaugh, California. 1970.

Treatment 1/		No. of stink bugs pe	er 100" of row <u>3</u> /
Insecticide 2/	AI per acre	Pre- Treatment <u>4</u> /	Post-treatment 28 days
Check Untreated	None	53	17
Methyl Parathion	1.0	55	12
Azodrin	1.0	60	10

- 1/ Plots were 24 rows X 1320 feet.
- 2/ Applied as sprays at 60 GPA by ground rig November 19.
- 3/ Ten 10 inch row samples of root crowns from each treatment on each sampling date.
- 4/ Pre-treatment counts were made November 18.

zodrin, Methyl Parathion, and Dibrome were applied during the winter by groundrig, out proved ineffective in controlling overwintering stink bug populations.

STINK BUG EXPERIMENT #2

Effect of clipping, burning, and insecticide applications on overwintering populations of the consperse stink bug, Euschistus conspersus in seed alfalfa.

Echevesti and Elizaldi. Firebaugh, California, 1971.

		Treatments 1/			Number of stink bugs	per	150" of row 5/
		Insecticide	le applications 4/	ons 4/	Pre	Post-Treatment	Days
Clipping 2/	Burning $\frac{3}{}$	Materials	_	Gal/Acre	Treatment 6/	6	14
Clipped Checks	None	None	8 9 0	9 0 9	26	22	14
Unclipped Checks	None	None	0	8 0	59	49	34
Clipped	Burned	None	9	8 6 0	17	ر.	8
Unclipped	Burned	None	0]	0 6	74	50	e C
Clipped	None	Methyl Parathion	.0	50	29	9	6
		Methyl Parathion	1.0	150	23	· ∞	+
		Dibrom	1.0	50	34	28	0
		Dibrom	1.0	150	23	17	9
Unclipped	None	Methyl Parathion	1,0	50	47	23	22
;		Methyl Parathion	1,0	150	47	9	23
		Dibrom	1,0	50	69	Si Si	0
		Dibrom	 0	150	29	39	9
1/ Plots were	1 acre (8~40" rows	× 1635°)	burned plot	except burned plots which were &	acre (4 rows x 1635').		

¹⁰¹⁰¹⁴¹⁰¹⁰¹ Clipped January 15. riots were I acre (0~40 rows x root) except burned plots waich were % acre (4 rows x

Burned with a 2-row butane burner January 20.

Applied with a ground sprayer January 20.

Fifteen 10 inch row samples of root crowns from each treatment on each sampling date.

Pre-application counts were made January 19.

Euschistus conspersus in seed alfalfa. John Nakamura Ranch, Sec. 11, Firebaugh, California, 1971. Results obtained with several insecticides applied to control the consperse stink bug,

\$ C F	1/				Number o	of stink	k dugs	per 251	44 O	row 4/		
Tiearment Tiearment Ti	\\ i \	Days after		Adules				Nymphal	1	Instare		Total Adults &
Insecticide 2/	AI/Acre	Treatment 3/	Males	Females	Total		2	က	4	ى ت	Total	Nymphs
Methyl Parathion	1,0	Pre	7	50	12	Q	349	57	47	27	987	867
		2	0	0	0	က	-	2	0	0	9	9
Thimet 600 +	1,0	Pre	∞	9	14	23	370	65	33	33	530	544
Dylox	1.5	. 2	-1	H	7	2	12	14	47	69	140	14.2
Thiodan +	2.0	Pre	29	18	47	5.	069	80	40	25	886	933
Dylox	1,5	2	17	7	24	36	218	41	36	33	369	393
Lannate	1,0	Pre	16	16	32	12	779	28	26	36	881	917
		5	9	S	11	13	311	51	54	34	463	7/ 17
Carzo1	1.0	Pre	П	- pund	2	;—1	251	8	77	36	463	465
		. 5	0	0	0	0	7	7	m	7	1 2	55

Plot size: Each treatment 5 acres (165' x 1320').

Applied as sprays at 15 GPA by aircraft 4:45 to 6:15 AM on July 28. Weather conditions, good. $\frac{7}{2}$

3/ Pretreatment counts were made July 27,

4/ 5 beating pan samples per treatment on each date.

STINK BUG EXPERIMENT #4

. .

Results obtained with Carzol applied to control the consperse stink bug, Euschistus conspersus

in seed alfalfa. John Nakamura Ranch, Sec. 11, Firebaugh, California, 1971.

	Carzol		Insecticide 2/	11.69	
	1.0		AI/Acre	rreatment <u>+</u> /	1/
1	,	Pre	Treatment 3/	Days after	
1	ָּ יַּט	15	Males		
10	, 00	12	Males Females	Adults	Nı
27	13	27	Total		Number of
6	12	12			stink
	24	60	2		bugs
c	, <u>, ,</u>	20	2 3	Nymphal Instars	stink bugs per 25' of row 4/
	0	53	4	1 Inst	of r
ļ	2	168	5	ars	ow <u>4</u> /
-	39	303	Total		
20	52	330	Adults & Nymphs	Tota1	

^{1/} Plot size 7 acres (231' x 1320')

^{12/} Applied as spray at 15 GPA by aircraft 5:00 to 5:15 AM on August 5. A 6 MPH wind was blowing from northwest.

^{3/} Pretreatment counts made August 4.

^{4/ 5} beating pan samples on each date.

STINK BUG EXPERIMENT #5

Results obtained with several insecticides applied to control the consperse stink bug, Euschistus conspersus, in seed alfalfa, R. and N. Farms, Firebaugh, California, 1971.

£	1/				Number of	stink	pugs	per 25°	O.F	10w 4/		
	rearment =/	Days		Adults				Nymphal	Lustars	ars		Total
Insecticide 2/	AI/Acre	Treatment 3/	Males	Females	Total		2	60	7	20	Total	- 1
Carzo1	0.5	Pre 7	1 29	4 26	5.5	0	165 17	22	2 78	40	242 123	247 178
Carzol	1,0	Pre 7	46	10	9	⊱ी ह—ी	128 12	33 14	18	41 2	211 47	220 66
Carzol + Thimet 600	0.5	Pre 7	1 15	2 25	3 40	m 0	100	12	3	34 4	151 20	154 60
Galecron	1.0	Pre 7	4	3 24	7	14 0	121	28 10	4 59	43	210 75	217 117
Fundal	1.0	Pre 7	33	31	64	00	5 5 7	50 12	9. 48	79 26	248 124	257 188
No Treatment	None	Pre 7	3 40	4 5	4 85	ın o	100	29	78	46 19	112	191

^{&#}x27; Plot size: Each treatment 5 acres (165' x 1320').

Applied as sprays at 15 GPA by aircraft 4:35 to 5:25 AM on August 11. Weather conditions good.

 $[\]frac{2}{3}$ Applied as sprays at 15 GPA by aircris. $\frac{3}{3}$ Pretreatment counts made August 10.

^{1/ 5} beating pan samples per treatment on each date.

STINK BUG EXPERIMENT #6

Populations of the consperse stink bug, <u>Euschistus conspersus</u>, occurring in seed alfalfa field plots treated with several insecticides throughout the season to control lygus bugs.

Diedrich Ranch, Firebaugh, California, 1971.

			Number	of s	tink	bug	s per	c 25 °	of row 2	/
Treatment <u>1</u> /		Adults			Ny	mpha	1 ins	stars		Total adults
	Males	Females	Total	1	2	3	4	5	Total	and nymphs
A	1	8	9	0	1	1	1	1	4	13
В	34	34	68	2	17	37	70	139	265	333
С	36	21	57	1	29	24	5 7	99	210	267
D	20	25	45	0	36	25	13	71	145	190

Plot size: each treatment 10 acres (330' x 1320'). Insecticides applied as sprays by aircraft at 10 or 15 GPA.

Treatment A: Carzol 0.5 lb/A at 15 GPA June 23.
Carzol 0.5 lb/A at 10 GPA July 8 and August 5.

Treatment B: Lannate 1.0 1b/A + Galecron 1.0 1b/A at 15 GPA June 23.

Lannate 1.0 1b/A at 10 GPA July 8 and August 5.

Dibrom 1.2 1b/A + Thiodan 1.44 1b/A at 15 GPA August 25.

Treatment C: Dimethoate 0.5 lb/A + Galecron 1.0 lb/A at 15 GPA June 23.

DDT 2.0 lb/A + Toxaphene 4.0 lb/A at 10 GPA July 8 and August 5.

Dibrom 1.2 lb/A + Thiodan 1.44 lb/A at 15 GPA August 25.

Treatment D: Thimet 600 1.0 1b/A + Galecron 0.75 1b/A + DDT 2.0 1b/A + Toxaphene 4.0 1b/A at 15 GPA June 16.

Thimet 600 1.0 1b/A + Dylox 1.2 1b/A at 10 GPA July 28.

Dibrom 1.2 1b/A at 10 GPA August 10.

Dibrom 1.2 1b/A + Thiodan 1.44 1b/A at 15 GFA August 25.

2/ Five pan samples per treatment on August 31.

Numbers and percentages of good and defective alfalfa seeds from a plot treated with Lannate for insect control. $\frac{1}{}$

Diedrich Ranch, Firebaugh, California, 1971.

					De:	fective Seed	s			
Sample 2/	Sub Sample	Good Seeds	Chalcid	Lygus bug	Stink bug	Shriveled	Water damage	Green	Other	Total Seeds
	а	160	0	13	12	0	0	0	0	185
	ъ	154	0	3	19	0	1	0	0	177
1	c	153	0	5	10	0	0	0	0	168
	đ	146	3	5	16	0	2	0	0	172
	Totals	613	3	26	57	0	3	0	0	702
	a	148	0	10	11	0	1	0	0	170
	ъ	146	1	6	18	0	2	0	0	173
2	С	97	0	6	34	0	0	0	0	137
	ď	140	1	7	21	0	0	0	0	169
	Totals	531	2	29	84	0	3	0	0	649
	Totals	1144	5	55	141	0	6	0	0	1351
% o	f total	84.7	.37	4.1	10.4	0	.44	0	0	100

^{1/} Plot size: 10 acres (330' x 1320'). Lannate at 1.0 lb. per acre was applied as spray by aircraft on June 23, July 8, and August 5. Galecron at 1.0 lb. per acre was added to June 23 treatment to control a heavy infestation of two-spotted spider mite.

Z/ Two 2-quart samples were hand harvested October 5 prior to commercial harvest.

Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Numbers and percentages of good and defective alfalfa seeds from a plot treated with a standard treatment for insect control. $\underline{1}/$

Diedrich Ranch, Firebaugh, California, 1971.

					Det	fective Seed	s			
Sample <u>2</u> /	Sub S ampl e	Good Seeds	Chalcid	Lygus bug	Stink bug	Shriveled	Water damage	Green	Other	Total Seeds
·	a	125	0	3	28	2	1	1	0	160
	ъ	100	1	11	33	0	0	0	0	145
1	С	124	4	6	27	0	1.	0	0	162
	d	127	0	4	29	0	1	0	0	161
	Totals	476	5	24	117	2	3	1.	0	628
	а	125	0	11	30	0	0	0	0	166
	b	147	0	7	19	O	0	1	0	1.74
2	С	131	1	9	26	0	0	2	1	170
	d	132	0	5	31	0	0	2	0	170
	Totals	535	1	32	106	0	0	5	1	680
	Totals	1011	6	56	223	2	3	6	1	1308
% о	f total	77.3	.46	4.3	17.0	.15	. 23	.46	.08	100

Plot size: 10 acres (330° x 1320°). Dimethoate at 0.5 1b. per acre was applied as spray by aircraft on June 23. Galecron at 1.0 1b. per acre was added to control a heavy infestation of two-spotted spider mite. DDT at 2.0 1b. per acre plus Toxaphene at 4.00 1b. per acre were applied on July 8 and August 5.

^{2/} Two 2-quart samples were hand harvested October 5 prior to commercial harvest.

Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Numbers and percentages of good and defective alfalfa seeds from a plot treated with Carzol for insect control. 1/

Diedrich Ranch, Firebaugh, California, 1971.

-					De	efective See	ds			
Sample 2/	Sub Sample	Good Seeds	Chalcid	Lygu bug	s Stink 3/ bug	Shriveled	Water damage	Green	Other	Total Seeds
	а	144	1	18	3	0	1	3	0	170
	ъ	145	1	18	2	0	1	2	0	169
1	С	130	0	24	1	0	2	0	0	157
	d	144	0	19	7	0	0	1	0	171
	Totals	563	2	79	13	0	4	6	0	667
· · · · · · · · · · · · · · · · · · ·	a	159	0	11	3	0	0	0	1	174
	ь	150	2	9	4	0	1	0	2	168
2	С	154	2	10	2	0	2	0	0	170
	d	151	0	20	3	0	1	1	0	176
	Totals	614	4	50	12	0	4	1	3	688
	Totals	1177	6	129	25	0	8	7	3	1355
% o:	f total	86.9	.44	9.5	1.9	0	<i>.</i> 59	.52	.22	100

Plot size 10 acres (330' x 1320'). Carzol at 0.5 lb. per acre was applied as spray by aircraft on June 23, July 8, and August 15.

Two 2-quart samples were hand harvested October 5 prior to commercial harvest.

Samples were hand threshed and lightly cleaned in a clipper seed cleaner. Counts based on four subsamples from each of the threshed 2-quart samples.

Carzol plot did not receive a methyl parathion application for stink bug and lygus control in late August which was applied to Lannate plot and grower treatment portion of the field.

Consperse stink bug populations observed on the foliage of sugar beets. Fresno County, California, 1971.

Date	Location	Observations
May 3-4	Vista del Llano, Sec. 15	Adults and 258 eggs collected.
May 12	Vista del Llano, Sec. 15	Adults and 83 eggs collected.
May 17	Vista del Llano, Sec. 15	Adults and 222 eggs collected.
May 25	Vista del Llano, Sec. 15	Spent one hour looking for eggs. Found no eggs, or live nymphs or adults.
June 3	Vista del Llano, Sec. 26	2 third and 3 fourth instars. No eggs or adults.
June 15	Vista del Llano, Sec. 15	2 to 12 nymphs per plant, second, third, fourth, and fifth instars.
July 7	West of Five Points	10 plant survey: 14 adults, no nymphs.
July 13-14	Giffen Cantua #1	10 plants: 1 adult, 7 nymphs (third, fourth, and fifth instars).
	Giffen Cantua #2	10 plants: 3 adults and 1 fifth instar nymph.
	Firebaugh 1 mile south of Broadview Gim	10 plants: 3 adults and 8 nymphs (third, fourth, and fifth instars).
July 20	Giffen Cantua #1	10 plants: 2 adults, no nymphs.

Research on the Consperse Stink Bug

Thomas F. Leigh, $\frac{1}{}$ Charles E. Jackson, $\frac{2}{}$ and O. G. Bacon $\frac{1}{}$

The following is a progress report covering research on the consperse stink bug, Euschistus conspersus Uhler, conducted during the 1971 season at Shafter and in the western portion of Fresno and Kings Counties. This research was supported in part through funds provided by the California Planting Cotton Seed Distributors. We are grateful to Robert Long, Tony Mortimore, Janice Carpenter, and Joe Leyva for their assistance in collection and rearing of the stink bugs and in carrying out the topical insecticide treatments.

Parasites of the Consperse Stink Bug

Thomas F. Leigh, U.C.D.

A survey for parasites of the consperse stink bug was begun in June of 1971 and continued into mid-September. Eggs, nymphs, and adults were collected from weed hosts, alfalfa, sugar beets, safflower, and milo at several locations in western Fresno and Kings Counties. All collections were brought to the insectary at Shafter and held for emergence of parasites. Adults and nymphs were provided green beans to assure survival.

Egg masses were difficult to locate, particularly in alfalfa fields. This is apparently a result of their "protective" coloration and the selection by females of dry leaves on which to deposite eggs. While nearly 40 egg masses were located in the course of the survey, no egg parasites were recovered.

Nearly 5,000 nymphal and adult stink bugs were collected from the several plant hosts. From these we were able to rear 4 parasites in the family Tachinidae. These have not yet been identified to species. This family of flies contains many very effective parasites of insect pests. Of particular interest, the 4 parasites were collected from alfalfa to which no insecticides were applied, 2 from a planting of alfalfa at the U. C. West Side Field Station and 2 from an isolated clump of alfalfa plants about 5 miles west of Five Points.

^{1/}Entomologists, Department of Entomology, University of California, Davis, California 95616

^{2/}Staff Research Associate, Department of Entomology, University of California, Davis, California 95616

Control of the second of the second of the

The state of the first open and the state of the state of

The state of the state of the second of the state of the

Service of the Course is the first and

Collaboration . Bushers

in the control of the second of the control of the

entropy of the state of the sta

^{. .} The Court of the gradual design of Designation by Matheur and the cash a milk is the cash of the site. The court of the little is

The $x^{q_1}(x)$ is the problem of the angle of equations of the $x^{q_1}(x)$ and $x^{q_2}(x)$ is the $x^{q_1}(x)$ and $x^{q_2}(x)$ and $x^{q_2}(x)$ and $x^{q_1}(x)$ and $x^{q_2}(x)$ and $x^{q_1}(x)$ and $x^{q_2}(x)$ and $x^{q_2}(x)$ and $x^{q_1}(x)$ and $x^{q_2}(x)$ and $x^{q_1}(x)$ and $x^{q_2}(x)$ and $x^{q_1}(x)$ and $x^{q_2}(x)$ and $x^{q_2}(x)$ and $x^{q_1}(x)$ and $x^{q_2}(x)$ and $x^{q_2}(x)$ and $x^{q_1}(x)$ and $x^{q_2}(x)$ and

A parasite of the same family (but different species) was reared from an adult of the red-shouldered plant bug collected from alfalfa at Shafter.

This survey indicates that few parasites are likely to be recovered in fields under insecticide treatment programs unless more selective insecticides can be located. Further surveys will be conducted in areas free of insecticide use to ascertain if other parasites exist and apparent potential for control of the consperse stink bug.

Laboratory Susceptibility of the Consperse Stink Bug to Selected Insecticides

Charles E. Jackson, Thomas F. Leigh, and O. G. Bacon

Many insect pests have shown increased tolerance to insecticidal compounds in recent years. To ascertain if the same situation exists with the consperse stink bug, Euschistus conspersus Uhler, adults were collected during the winter and summer of 1971 and treated with measured doses of three insecticides: Dylox (trichlorfon), methyl parathion, and Dibrom (naled). Adults were also treated with Bidrink (3-hydroxy-N,N-dimethyl-ciscrotonamide), Carzolk (formetanate), and Orthenek (0,S-dimethyl N-acetyl phosphoramidoate) to establish their susceptibility to these compounds.

Susceptibility was established on a time-mortality basis. Bugs were treated in groups of 80 or 100. Each bug was treated with 100 micrograms of toxicant in 3 microliters of acetone solution which also contained 1% of glycerin. (Carzol was used in a methanol solution.) Mortality was then determined at frequent intervals over a 3- to 4-hour period.

Field-collected bugs were held on green beans for 1 or 2 days before treatment. Laboratory-reared adults and nymphs were the first generation offspring of adults collected from seed alfalfa fields in the Five Points to Firebaugh area of Fresno County. Nymphs were treated when in the 5th instar and adults when 1-week old. For adult tests, equal numbers of males and females were used.

The results are presented in the accompanying table (Table L-1) along with similar results from work conducted in 1962. Under laboratory conditions this insect is highly susceptible to Dibrom with an ET50 (time for 50% mortality) of only 0.22 hour, Carzol with an ET50 of 0.23 hour, and Bidrin with an ET50 of 0.17 hour. Susceptibility to methy parathion and Dylox was nearly equal with ET50's of 0.61 and 0.72 hour, respectively. It is less susceptible to Orthene at an ET50 of 2.24.

When the results for 1971 are compared with results for 1962 they show a significant increase in tolerance to methyl parathion but not to Dylox. However, these data are not interpreted at this time as indicating a very meaningful increase in tolerance in the consperse stink bug. A

comparison of mortalities for field-collected bugs that are in diapause with mortality for laboratory reared bugs that are reproductive shows significantly greater tolerance in diapausing bugs to methyl parathion, Dylox, and Orthene.

These results are valuable in detecting significant changes in the susceptibility of stink bugs to insecticides, but may not be useful for inference to field conditions. Inherent characteristics of each chemical may greatly influence its field performance. For example, while both Dylox and Dibrom perform well in the laboratory, they have not provided consistently good control in the field. This may be due to their short residual life compared to the longer residual life of methyl parathion.

and the state of t

The first of the content of the cont

Table L-1. Effective time for 50% mortality (ET50) in the consperse stink bug following topical treatment with several insecticides at a dosage of 100 micrograms of toxicant in 3 microliters of solvent plus 1% glycerin.

Toxicant	ET50 in hours		onfidence upper	Limits lower
	La	boratory reare	d adults	
Methyl parathion Dylox Bidrin Dibrom Carzol	0.67 0.68 0.17 0.22 0.23		0.72 0.72 0.19 0.24 0.25	0.63 0.65 0.15 0.20 0.21
Orthene	2.24		2.40	2.09
	La	boratory reared	i nymphs	
Methyl parathion Dylox Dibrom	0.61 0.72 0.20		0.70 0.78 0.23	0.53 0.66 0.17
	······································	Comparisons	<u> </u>	·
Season		Methyl parath	nion	
Field collected - 1962 Field collected - 1971 Laboratory reared - 1971	0.75 0.89 0.76		0.82 0.94 0.86	0.69 0.83 0.67
		Dylox		
Field collected - 1962 Field collected - 1971 Laboratory reared - 1971	1.33 1.35 1.07		1.44 1.42 1.16	1.23 1.28 0.99
		Orthene		
Field collected - 1971 Laboratory reared - 1971	3.56 2.24		3.79 2.40	3.35 2.09

۷,

	Profession		ಚಿತ್ರವಿಸ್ಥಾಪ ಚಿತ
e de la Maria. La companya di managana di	1.48 Q2	The Section of the Se	and the second of the second
	.!	es kiejs se nomber 1903 se	·
		1	
er iku ang inyattal	$\sum_{i=1}^{n} \left(\frac{1}{n} + \frac{1}{n} \right)^{n}$	1.7.0	6,63
201.93	80. ·	\$1.0	66.0
Section 1	7. f. (r	() · , ()	22.74
s ridir(San San San	AA (4)	W. J
	$f(\vec{X}, \vec{X})$	18. C	15.7
1125 (1	AL S	gz Á	60.
	Salar Sa	digi ka sesanya Kao	
n to 2000 of the state of the state of	$\{a\}$	$W_{0,\infty}$	S. Francisco
Ko i sa	\$1.1	31°, 13	id . U
erfect (Trajac)	398.40	38.6	770.0
		- 1981 (1 30 1)	en e
**		noin, brain it;	
of water have him	Chia II	28.0	90.0
Now Hotelston Buch	98.5	ss€ . C.	£3.6
on Bade Carly Burgons		JA . H	13.5
		2037	
en e	1.6 1	$N^{(1)} \sim \epsilon$	£1.4
Compatibility Mask	\$ 0 d	18 1 4 3	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	VO. 1	*	816.4
to a second for the second sec			
onales interes Abba	, , , ,	ergenularist.	
entrales Trombon Abde. Par entrales Espain			i če.

The use of trade names is sometimes necessary to convey information more clearly. No endorsement of products named in this publication is intended not is criticism implied of similar products not mentioned.

CO-OPERATIVE EXTENSION WORK IN AGRICULTURE AND HOME ECONOMICS, U. S. Department of Agriculture and University of California co-operating.